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Low-Complexity Low-Latency Architecture for Matching
of Data Encoded With Hard Systematic
Error-Correcting Codes

Byeong Yong Kong, Jihyuck Jo, Hyewon Jeong, Mina Hwang,
Soyoung Cha, Bongjin Kim, and In-Cheol Park

Abstract— A new architecture for matching the data protected with an
error-correcting code (ECC) is presented in this brief to reduce latency
and complexity. Based on the fact that the codeword of an ECC is usually
represented in a systematic form consisting of the raw data and the parity
information generated by encoding, the proposed architecture parallelizes
the comparison of the data and that of the parity information. To further
reduce the latency and complexity, in addition, a new butterfly-formed
weight accumulator (BWA) is proposed for the efficient computation of
the Hamming distance. Grounded on the BWA, the proposed architecture
examines whether the incoming data matches the stored data if a certain
number of erroneous bits are corrected. For a (40, 33) code, the proposed
architecture reduces the latency and the hardware complexity by ~32%
and 9%, respectively, compared with the most recent implementation.

Index Terms—Data comparison, error-correcting codes (ECCs), Ham-
ming distance, systematic codes, tag matching.

I. INTRODUCTION

Data comparison is widely used in computing systems to perform
many operations such as the tag matching in a cache memory and the
virtual-to-physical address translation in a translation lookaside buffer
(TLB). Because of such prevalence, it is important to implement the
comparison circuit with low hardware complexity. Besides, the data
comparison usually resides in the critical path of the components
that are devised to increase the system performance, e.g., caches and
TLBs, whose outputs determine the flow of the succeeding operations
in a pipeline. The circuit, therefore, must be designed to have as
low latency as possible, or the components will be disqualified from
serving as accelerators and the overall performance of the whole
system would be severely deteriorated. As recent computers employ
error-correcting codes (ECCs) to protect data and improve reliabil-
ity [1]-[5], complicated decoding procedure, which must precede
the data comparison, elongates the critical path and exacerbates the
complexity overhead. Thus, it becomes much harder to meet the
above design constraints. Despite the need for sophisticated designs
as described, the works that cope with the problem are not widely
known in the literature since it has been usually treated within
industries for their products. Recently, however, [6] triggered the
attraction of more and more attentions from the academic field.

The most recent solution for the matching problem is the direct
compare method [6], which encodes the incoming data and then
compares it with the retrieved data that has been encoded as well.
Therefore, the method eliminates the complex decoding from the
critical path. In performing the comparison, the method does not
examine whether the retrieved data is exactly the same as the
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Fig. 1. (a) Decode-and-compare architecture and (b) encode-and-compare
architecture.

incoming data. Instead, it checks if the retrieved data resides in
the error correctable range of the codeword corresponding to the
incoming data. As the checking necessitates an additional circuit to
compute the Hamming distance, i.e., the number of different bits
between the two codewords, the saturate adder (SA) was presented
in [6] as a basic building block for calculating the Hamming distance.
However, [6] did not consider an important fact that may improve the
effectiveness further, a practical ECC codeword is usually represented
in a systematic form in which the data and parity parts are completely
separated from each other [7]. In addition, as the SA always forces its
output not to be greater than the number of detectable errors by more
than one, it contributes to the increase of the entire circuit complexity.

In this brief, we renovate the SA-based direct compare architecture
to reduce the latency and hardware complexity by resolving the
aforementioned drawbacks. More specifically, we consider the char-
acteristics of systematic codes in designing the proposed architecture
and propose a low-complexity processing element that computes the
Hamming distance faster. Therefore, the latency and the hardware
complexity are decreased considerably even compared with the SA-
based architecture.

The rest of this brief is organized as follows. Section II reviews
previous works. The proposed architecture is explained in Section III,
and evaluated in Section IV. Finally, concluding remarks are made in
Section V.

II. PREVIOUS WORKS

This section describes the conventional decode-and-compare archi-
tecture and the encode-and-compare architecture based on the direct
compare method. For the sake of concreteness, only the tag matching
performed in a cache memory is discussed in this brief, but the
proposed architecture can be applied to similar applications without
loss of generality.

A. Decode-and-Compare Architecture

Let us consider a cache memory where a k-bit tag is stored in
the form of an n-bit codeword after being encoded by a (n, k) code.
In the decode-and-compare architecture depicted in Fig. 1(a), the n-bit
retrieved codeword should first be decoded to extract the original k-bit
tag. The extracted k-bit tag is then compared with the k-bit tag field
of an incoming address to determine whether the tags are matched or
not. As the retrieved codeword should go through the decoder before
being compared with the incoming tag, the critical path is too long
to be employed in a practical cache system designed for high-speed
access. Since the decoder is one of the most complicated processing
elements, in addition, the complexity overhead is not negligible.
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Fig. 2. SA-based architecture supporting the direct compare method [6].

B. Encode-and-Compare Architecture

Note that decoding is usually more complex and takes more
time than encoding as it encompasses a series of error detection
or syndrome calculation, and error correction [7]. The implemen-
tation results in [8] support the claim. To resolve the drawbacks of
the decode-and-compare architecture, therefore, the decoding of a
retrieved codeword is replaced with the encoding of an incoming
tag in the encode-and-compare architecture More precisely, a k-bit
incoming tag is first encoded to the corresponding n-bit codeword X
and compared with an n-bit retrieved codeword Y as shown in
Fig. 1(b). The comparison is to examine how many bits the two
codewords differ, not to check if the two codewords are exactly equal
to each other. For this, we compute the Hamming distance d between
the two codewords and classify the cases according to the range of d.
Let tmax and rmax denote the numbers of maximally correctable and
detectable errors, respectively. The cases are summarized as follows.

1) If d =0, X matches Y exactly.

2) If 0 < d < tmax, X will match Y provided at most #ymax errors
in Y are corrected.

3) If tmax < d < rmax, Y has detectable but uncorrectable errors.
In this case, the cache may issue a system fault so as to make
the central processing unit take a proper action.

4) If rmax < d, X does not match Y.

Assuming that the incoming address has no errors, we can regard the
two tags as matched if d is in either the first or the second ranges.
In this way, while maintaining the error-correcting capability, the
architecture can remove the decoder from its critical path at the cost
of an encoder being newly introduced. Note that the encoder is, in
general, much simpler than the decoder, and thus the encoding cost
is significantly less than the decoding cost.

Since the above method needs to compute the Hamming dis-
tance, [6] presented a circuit dedicated for the computation. The
circuit shown in Fig. 2 first performs XOR operations for every pair
of bits in X and Y so as to generate a vector representing the bitwise
difference of the two codewords. The following half adders (HAs) are
used to count the number of 1’s in two adjacent bits in the vector. The
numbers of 1’s are accumulated by passing through the following SA
tree. In the SA tree, the accumulated value z is saturated to rmax + 1
if it exceeds rmax. More precisely, given inputs x and y, z can be
expressed as follows:

if x +y < rmax
otherwise.

7= X + y9
| rmax + 1,
The final accumulated value indicates the range of d. As the compul-
sory saturation necessitates additional logic circuitry, the complexity
of a SA is higher than the conventional adder.

ey

III. PROPOSED ARCHITECTURE

This section presents a new architecture that can reduce the latency
and complexity of the data comparison by using the characteristics of
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Fig. 3. Timing diagram of the tag match in (a) direct compare method [6]
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Fig. 5. Proposed architecture optimized for systematic codewords.

systematic codes. In addition, a new processing element is presented
to reduce the latency and complexity further.

A. Datapath Design for Systematic Codes

In the SA-based architecture [6], the comparison of two codewords
is invoked after the incoming tag is encoded. Therefore, the critical
path consists of a series of the encoding and the n-bit comparison
as shown in Fig. 3(a). However, [6] did not consider the fact that, in
practice, the ECC codeword is of a systematic form in which the data
and parity parts are completely separated as shown in Fig. 4. As the
data part of a systematic codeword is exactly the same as the incom-
ing tag field, it is immediately available for comparison while the
parity part becomes available only after the encoding is completed.
Grounded on this fact, the comparison of the k-bit tags can be started
before the remaining (n—k)-bit comparison of the parity bits. In the
proposed architecture, therefore, the encoding process to generate the
parity bits from the incoming tag is performed in parallel with the
tag comparison, reducing the overall latency as shown in Fig. 3(b).

B. Architecture for Computing the Hamming Distance

The proposed architecture grounded on the datapath design is
shown in Fig. 5. It contains multiple butterfly-formed weight accumu-
lators (BWAs) proposed to improve the latency and complexity of the
Hamming distance computation. The basic function of the BWA is to
count the number of 1’s among its input bits. It consists of multiple
stages of HAs as shown in Fig. 6(a), where each output bit of a HA
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Fig. 6. Proposed BWA. (a) General structure and (b) new structure revised
for the matching of ECC-protected data. Note that sum-bit lines are dotted
for visibility.

is associated with a weight. The HAs in a stage are connected in a
butterfly form so as to accumulate the carry bits and the sum bits of
the upper stage separately. In other words, both inputs of a HA in a
stage, except the first stage, are either carry bits or sum bits computed
in the upper stage. This connection method leads to a property that
if an output bit of a HA is set, the number of 1’s among the bits in
the paths reaching the HA is equal to the weight of the output bit.
In Fig. 6(a), for example, if the carry bit of the gray-colored HA is
set, the number of 1’s among the associated input bits, i.e., A, B, C,
and D, is 2. At the last stage of Fig. 6(a), the number of 1’s among
the input bits, d, can be calculated as

d=81+4(J+K+M)+2(L+N+O0)+P. )

Since what we need is not the precise Hamming distance but
the range it belongs to, it is possible to simplify the circuit. When
rmax = 1, for example, two or more than two 1’s among the input
bits can be regarded as the same case that falls in the fourth range.
In that case, we can replace several HAs with a simple OR-gate tree
as shown in Fig. 6(b). This is an advantage over the SA that resorts
to the compulsory saturation expressed in (1).

Note that in Fig. 6, there is no overlap between any pair of two
carry-bit lines or any pair of two sum-bit lines. As the overlaps
exist only between carry-bit lines and sum-bit lines, it is not hard
to resolve overlaps in the contemporary technology that provides
multiple routing layers no matter how many bits a BWA takes.

We now explain the overall architecture in more detail. Each XOR
stage in Fig. 5 generates the bitwise difference vector for either data
bits or parity bits, and the following processing elements count the
number of 1’s in the vector, i.e., the Hamming distance. Each BWA at
the first level is in the revised form shown in Fig. 6(b), and generates
an output from the OR-gate tree and several weight bits from the HA
trees. In the interconnection, such outputs are fed into their associated
processing elements at the second level. The output of the OR-gate
tree is connected to the subsequent OR-gate tree at the second level,
and the remaining weight bits are connected to the second level BWAs
according to their weights. More precisely, the bits of weight w are
connected to the BWA responsible for w-weight inputs. Each BWA
at the second level is associated with a weight of a power of two that
is less than or equal to Ppax, Where Ppax is the largest power of
two that is not greater than rmax + 1. As the weight bits associated
with the fourth range are all ORed in the revised BWAs, there is no
need to deal with the powers of two that are larger than Ppax.

For example, let us consider a simple (8, 4) single-error correction
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TABLE I
TRUTH TABLE OF THE DECISION UNIT FOR A (8, 4) CODE

Decision
Match
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Mismatch
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0
0
1
1
1
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double-error detection code. The corresponding first and second level
circuits are shown in Fig. 7. Note that the encoder and XOR banks
are not drawn in Fig. 7 for the sake of simplicity. Since rmax = 2,
Pmax = 2 and there are only two BWAs dealing with weights 2 and 1
at the second level. As the bits of weight 4 fall in the fourth range,
they are ORed. The remaining bits associated with weight 2 or 1 are
connected to their corresponding BWAs. Note that the interconnection
induces no hardware complexity, since it can be achieved by a bunch
of hard wiring.

Taking the outputs of the preceding circuits, the decision unit
finally determines if the incoming tag matches the retrieved codeword
by considering the four ranges of the Hamming distance. The decision
unit is in fact a combinational logic of which functionality is specified
by a truth table that takes the outputs of the preceding circuits as
inputs. For the (8, 4) code that the corresponding first and second
level circuits are shown in Fig. 7, the truth table for the decision unit
is described in Table I. Since U and V cannot be set simultaneously,
such cases are implicitly included in do not care terms in Table I.

C. General Expressions for the Complexity and the Latency

The complexity as well as the latency of combinational circuits
heavily depends on the algorithm employed. In addition, as the
complexity and the latency are usually conflicting with each other, it
is unfortunately hard to derive an analytical and fully deterministic
equation that shows the relationship between the number of gates and
the latency for the proposed architecture and also for the conventional
SA-based architecture. To circumvent the difficulty in analytical
derivation, we present instead an expression that can be used to
estimate the complexity and the latency by employing some variables
for the nondeterministic parts. The complexity of the proposed
architecture, C, can be expressed as

C = Cxor+ Cenc+ Cpwa(k) + Cpwa(n— k)+ C2nd + Cpu
< n+ Cgnc + 2Cswa(n) + Cpu 3)
where Cxor, Cenc, Cand> Cbu, and Cgwa(n) are the complexities of

XOR banks, an encoder, the second level circuits, the decision unit,
and a BWA for n inputs, respectively. Using the recurrence relation,
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TABLE 1T
COMPARISON FOR LATENCY AND HARDWARE COMPLEXITY

ECC

Gate-Level Counting

Implementation Results

Architecture

Latency® Complexity” CPD¢ EGC!

Conventional 14 (1.17°  137(1.10) _ 2.13(1.16) 320 (1.20)

(16, 11) SA-based 14(1.17)  132(1.06)  2.12(1.16) 304 (1.14)
Proposed 12(1.00)  125(1.00)  1.83(1.00) 266 (1.00)

Conventional 16 (1.23) 238 (1.24)  2.31(1.16) 491 (1.19)

(24, 18) SA-based 18(1.38)  211(1.10)  2.46(1.23)  475(1.15)
Proposed 13(1.00)  192(1.00)  2.00(1.00) 412 (1.00)

Conventional 16 (1.23) 336 (1.29) 248 (124) 684 (1.22)

(31,25) SA-based 18(138) 290 (1.11)  2.57(1.29) 634 (1.13)
Proposed 13(1.00)  261(1.00)  1.99(1.00) 561 (1.00)

Conventional 18 (1.20) 473 (1.38)  2.64(1.20) 861 (1.21)

(40, 33) SA-based 22(147)  377(1.10)  2.96(1.35) 816 (1.15)
Proposed 15(1.00)  342(1.00)  220(1.00) 709 (1.00)

“The number of gates in the critical path.
°The count of all the gates.
“The critical-path delay (CPD) in nanoseconds.

The equivalent gate count (EGC) measured by counting a two-input NAND as one.
“The numbers in parentheses are normalized values.

Cpwa(n) can be calculated as
Cpwa(n) = Cgwa ([n/2]) + Cewa (In/21) +2 [n/2] 4)

where the seed value, Cywa(1), is 0. Note that when a + b = ¢,
Cpwala) + Cgwa(b) < Cpwa(c) holds for all positive integers
a, b, and c. Because of the inequality and the fact that an OR-gate
tree for n inputs is always simpler than a BWA for n inputs, both
CBWA(k) + CBWA(I’l —k) and C2nd are bounded by CBWA(I’l).

The latency of the proposed architecture, L, can be expressed as

L < max[Lxor + Lewa(k), Lenc + Lxor + Lewa(n — k)]
+Lond+Lpu
max(l + |—10g2 k] ,Lgnc + 1+ |—10g2(n—k)-|)

+ |_10g2 I’l-| + LDU

IA

(&)

where Lxor, Lenc, Lond, Lpu, and Lgwa(n) are the latencies of an
XOR bank, an encoder, the second level circuits, the decision unit,
and a BWA for n inputs, respectively. Note that the latencies of the
OR-gate tree and BWAs for x < n inputs at the second level are
all bounded by [logz n—| As one of BWAs at the first level finishes
earlier than the other, some components at the second level may
start earlier. Similarly, some BWAs or the OR-gate tree at the second
level may provide their output earlier to the decision unit so that
the unit can begin its operation without waiting for all of its inputs.
In such cases, Lypqg and Lpy can be partially hidden by the critical
path of the preceding circuits, and L becomes shorter than the given
expression.

IV. EVALUATION

For a set of four codes including the (31, 25) code quoted from [6],
Table II shows the latencies and hardware complexities resulting
from three architectures: 1) the conventional decode-and-compare;
2) the SA-based direct compare; and 3) the proposed ones. We
measured the metrics at the gate-level first and then implemented the
circuits in a 0.13-um CMOS technology to provide more realistic
results by deliberating some practical factors, e.g., gate sizing and
wiring delays. In [6], the latency is measured from the time when
the incoming address is completely encoded. As the critical path
starts from the arrival of the incoming address to a cache memory,
the encoding delay must be, however, included in the latency
computation. The latency values in Table II are all measured in
this way. Besides, critical-path delays in Table II are obtained by

performing postlayout simulations and equivalent gate counts are
measured by counting a two-input NAND as one.

As shown in Table II, the proposed architecture is effective in
reducing the latency as well as the hardware complexity even with
considering the practical factors. Note that the effectiveness of the
proposed architecture over the SA-based one in shortening the latency
gets larger as the size of a codeword increases. The reason is as
follows. The latencies of the SA-based architecture and the proposed
one are dominated by SAs and HAs, respectively. As the bit-width
doubles, at least one more stage of SAs or HAs needs to be added.
Since the critical path of a HA consists of only one gate while that
of a SA has several gates, the proposed architecture achieves lower
latency than its SA-based counterpart, especially for long codewords.

V. CONCLUSION

To reduce the latency and hardware complexity, a new architecture
has been presented for matching the data protected with an ECC. The
proposed architecture examines whether the incoming data matches
the stored data if a certain number of erroneous bits are corrected. To
reduce the latency, the comparison of the data is parallelized with the
encoding process that generates the parity information. The parallel
operations are enabled based on the fact that the systematic codeword
has separate fields for the data and parity. In addition, an efficient
processing architecture has been presented to further minimize the
latency and complexity. As the proposed architecture is effective in
reducing the latency as well as the complexity considerably, it can be
regarded as a promising solution for the comparison of ECC-protected
data. Though this brief focuses only on the tag match of a cache
memory, the proposed method is applicable to diverse applications
that need such comparison.
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