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Abstract—We present the algorithm and architecture of a BCD parallel multiplier that exploits some properties of two different

redundant BCD codes to speedup its computation: the redundant BCD excess-3 code (XS-3), and the overloaded BCD representation

(ODDS). In addition, new techniques are developed to reduce significantly the latency and area of previous representative high-

performance implementations. Partial products are generated in parallel using a signed-digit radix-10 recoding of the BCD multiplier

with the digit set [-5, 5], and a set of positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in XS-3. This encoding has several

advantages. First, it is a self-complementing code, so that a negative multiplicand multiple can be obtained by just inverting the bits of

the corresponding positive one. Also, the available redundancy allows a fast and simple generation of multiplicand multiples in a carry-

free way. Finally, the partial products can be recoded to the ODDS representation by just adding a constant factor into the partial

product reduction tree. Since the ODDS uses a similar 4-bit binary encoding as non-redundant BCD, conventional binary VLSI circuit

techniques, such as binary carry-save adders and compressor trees, can be adapted efficiently to perform decimal operations. To show

the advantages of our architecture, we have synthesized a RTL model for 16� 16-digit and 34� 34-digit multiplications and performed

a comparative survey of the previous most representative designs. We show that the proposed decimal multiplier has an area

improvement roughly in the range 20-35 percent for similar target delays with respect to the fastest implementation.

Index Terms—Parallel multiplication, decimal hardware, overloaded BCD representation, redundant excess-3 code, redundant arithmetic
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1 INTRODUCTION

DECIMAL fixed-point and floating-point formats are
important in financial, commercial, and user-oriented

computing, where conversion and rounding errors that are
inherent to floating-point binary representations cannot be
tolerated [3]. The new IEEE 754-2008 Standard for Floating-
Point Arithmetic [15], which contains a format and specifi-
cation for decimal floating-point (DFP) arithmetic [1], [2],
has encouraged a significant amount of research in decimal
hardware [6], [9], [10], [28], [30].

Furthermore, current IBM Power and z/System families
of microprocessors [5], [8], [23], and the Fujitsu Sparc X
microprocessor [26], oriented to servers and mainframes,
already include fully IEEE 754-2008 compliant decimal
floating-point units (DFPUs) for Decimal64 (16 precision
digits) and Decimal128 (34 precision digits) formats.

Since area and power dissipation are critical design
factors in state-of-the-art DFPUs, multiplication and divi-
sion are performed iteratively by means of digit-by-digit

algorithms [4], [5], and therefore they present low perfor-
mance. Moreover, the aggressive cycle time of these pro-
cessors puts an additional constraint on the use of parallel
techniques [6], [19], [30] for reducing the latency of DFP
multiplication in high-performance DFPUs. Thus, efficient
algorithms for accelerating DFP multiplication should result
in regular VLSI layouts that allow an aggressive pipelining.

Hardware implementations normally use BCD instead of
binary to manipulate decimal fixed-point operands and
integer significands of DFP numbers for easy conversion
between machine and user representations [21], [25]. BCD
encodes a number X in decimal (non-redundant radix-10)
format, with each decimal digit Xi 2 ½0; 9� represented in a
4-bit binary number system. However, BCD is less efficient
for encoding integers than binary, since codes 10 to 15 are
unused. Moreover, the implementation of BCD arithmetic
has more complications than binary, which lead to area and
delay penalties in the resulting arithmetic units.

A variety of redundant decimal formats and arithmetics
have been proposed to improve the performance of BCD
multiplication. The BCD carry-save format [9] represents a
radix-10 operand using a BCD digit and a carry bit at each
decimal position. It is intended for carry-free accumulation
of BCD partial products using rows of BCD digit adders
arranged in linear [9], [20] or tree-like configurations
[19]. Decimal signed-digit (SD) representations [10], [14],
[24], [27] rely on a redundant digit set f�a; . . . ; 0; . . . ; ag,
5 � a � 9, to allow decimal carry-free addition.

BCD carry-save and signed-digit radix-10 arithmetics
offer improvements in performance with respect to non-
redundant BCD. However, the resultant VLSI implementa-
tions in current technologies of multioperand adder trees
may result in more irregular layouts than binary carry-save
adders (CSA) and compressor trees.

� A. Vazquez is with the Centro de Investigaci�on en Tecnolox�ıas da
Informaci�on (CITIUS), University of Santiago de Compostela, 15782
Santiago de Compostela, Spain. E-mail: alvaro.vazquez@usc.es.

� E. Antelo is with the Department of Electrical and Computer Engineering,
University of Santiago de Compostela, Spain.
E-mail: elisardo.antelo@usc.es.

� J.D. Bruguera is with the Department of Electrical and Computer Engi-
neering, University of Santiago de Compostela, Spain, and the Centro de
Investigaci�on en Tecnolox�ıas da Informaci�on (CITIUS), University of
Santiago de Compostela, 15782 Santiago de Compostela, Spain.
E-mail: jd.bruguera@usc.es.

Manuscript received 15 Sep. 2013; revised 13 Jan. 2014; accepted 5 Mar. 2014.
Date of publication 3 Apr. 2014; date of current version 15 July 2014.
Recommended for acceptance by A. Nannarelli, P.-M. Seidel, and P.T.P. Tang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2315626

1902 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

0018-9340� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Some approaches rely on binary arithmetic to perform
decimal multioperand addition and multiplication. In [6], a
decimal multioperand adder is implemented using columns
of binary compressors and subsequent binary-to-BCD
conversions. Also, decimal multioperand addition can be
improved using binary carry-save adders and decimal dou-
blers if digits are not represented in BCD but in certain deci-
mal codes, namely, 4221 and 5211. These 4-bit decimal
codes satisfy that the sum of the weights of the bits is equal
to 9, so that all the 16 4-bit combinations represent a decimal
digit in ½0; 9�. These codes have been used to speed-up deci-
mal multioperand addition and multiplication [29], [30],
[31]. The additional redundancy available in the 4-bit
encoding is used to speed-up BCD operations while retain-
ing the same data path width.

Furthermore, these codes are self-complementing, so
that the 9’s complement of a digit, required for negation, is
easily obtained by bit-inversion of its 4-bit representation.
A disadvantage of 4221 and 5211 codes, is the use of a non-
redundant radix-10 digit set [0, 9] as BCD. Thus, the redun-
dancy is constrained to the digit bounds, so that complex
decimal multiples, such as 3X, cannot be obtained in a
carry-free way.

The overloaded BCD (or ODDS—overloaded decimal
digit set) representation was proposed to improve decimal
multioperand addition [18], and sequential [17] and parallel
[12], [13] decimal multiplications. In this code, each 4-bit
binary value represents a redundant radix-10 digit Xi 2
½0; 15�. The ODDS presents interesting properties for a fast
and efficient hardware implementation of decimal arithme-
tic: (1) it is a redundant decimal representation so that it
allows carry-free generation of both simple and complex
decimal multiples (2X, 3X, 4X, 5X, 6X,. . .) and addition,
(2) since digits are represented in the binary number system,
digit operations can be performed with binary arithmetic,
and (3) unlike BCD, there is no need to implement addi-
tional hardware to correct invalid 4-bit combinations. A
disadvantage with respect to signed-digit and self-comple-
menting codes, is a slightly more complex implementation
of 9’s complement operation for negation of operands and
subtraction.

In this work, we focus on the improvement of parallel
decimal multiplication by exploiting the redundancy of two
decimal representations: the ODDS and the redundant BCD
excess-3 (XS-3) representation, a self-complementing code
with the digit set [�3, 12]. We use a minimally redundant
digit set for the recoding of the BCD multiplier digits, the
signed-digit radix-10 recoding [30], that is, the recoded
signed digits are in the set f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g.
For this digit set, themain issue is to perform the�3multiple
without long carry-propagation (note that �2 and �5 are
easy multiples for decimal [30] and that �4 is generated as
two consecutive �2 operations). We propose the use of a
general redundant BCD arithmetic (that includes the ODDS,
XS-3 and BCD representations) to accelerate parallel BCD
multiplication in twoways:

� Partial product generation (PPG). By generating posi-
tive multiplicand multiples coded in XS-3 in a carry-
free form. An advantage of the XS-3 representation
over non-redundant decimal codes (BCD and 4221/

5211 [30]) is that all the interesting multiples for deci-
mal partial product generation, including the 3X
multiple, can be implemented in constant time with
an equivalent delay of about three XOR gate levels.
Moreover, since XS-3 is a self-complementing code,
the 9’s complement of a positive multiple can be
obtained by just inverting its bits as in binary.

� Partial product reduction (PPR). By performing the
reduction of partial products coded in ODDS via
binary carry-save arithmetic. Partial products can be
recoded from the XS-3 representation to the ODDS
representation by just adding a constant factor
into the partial product reduction tree. The resultant
partial product reduction tree is implemented using
regular structures of binary carry-save adders or
compressors. The 4-bit binary encoding of ODDS
operands allows a more efficient mapping of decimal
algorithms into binary techniques. By contrast,
signed-digit radix-10 and BCD carry-save redundant
representations require specific radix-10 digit adders
[14], [22], [27].

The paper is organized as follows. Section 2 introduces
formally the redundant BCD representations used in this
work. Section 3 outlines the high level implementation
(algorithm and architecture) of the proposed BCD parallel
multiplier. In Section 4 we describe the techniques devel-
oped for the generation of decimal partial products. Deci-
mal partial product reduction and the final conversion to a
non-redundant BCD product are detailed in Sections 5 and
6 respectively. In Section 7 we provide area and delay esti-
mates and a comparison with other representative decimal
implementations that show the potential advantages of our
proposal. We finally summarize the main conclusions and
contributions of this work in Section 8.

2 REDUNDANT BCD REPRESENTATIONS

The proposed decimal multiplier uses internally a redun-
dant BCD arithmetic to speed up and simplify the imple-
mentation. This arithmetic deals with radix-10 ten’s
complement integers of the form:

Z ¼ �sz � 10d þ
Xd�1

i¼0

Zi � 10i; (1)

where d is the number of digits, sz is the sign bit, and
Zi 2 ½l� e;m� e� is the ith digit, with

0 � l � e; 9þ e � m � 24 � 1ð¼ 15Þ:
Parameter e is the excess of the representation and usually
takes values 0 (non excess), 3 or 6. The redundancy index r

is defined as r ¼ m� lþ 1� r [12], being r ¼ 10.
The value of Zi depends on the decimal representation

parameterized by (l;m; e). We use a 4-bit encoding to repre-
sent digits Zi. This allows us to manage decimal operands in
different representations with the same arithmetic, such as
BCD (Zi 2 ½0; 9�; e ¼ 0; l ¼ 0;m ¼ 9; r ¼ 0), BCD excess-3
(Zi 2 ½0; 9�; e ¼ 3; l ¼ 3;m ¼ 12; r ¼ 0), BCD excess-6 (Zi 2
½0; 9�; e ¼ 6; l ¼ 6;m ¼ 15; r ¼ 0), and redundant representa-
tions (r > 0), such as the ODDS representation (Zi 2
½0; 15�; e ¼ 0; l ¼ 0; m ¼ 15; r ¼ 6), or the XS-3 representa-
tion (Zi 2 ½�3; 12�; e ¼ 3; l ¼ 0; m ¼ 15; r ¼ 6).
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On the other hand, the binary value of the 4-bit vector
representation of Zi is given by

½Zi� ¼
X3
j¼0

zi;j � 2j; (2)

zi;j being the jth bit of the ith digit. Therefore, the value of
digit Zi can be obtained by subtracting the excess e of the
representation from the binary value of its 4-bit encoding,
that is,

Zi ¼ ½Zi� � e:

Note that bit-weighted codes such as BCD and ODDS use
the 4-bit binary encoding (or BCD encoding) defined in
Expression (2). Thus, Zi ¼ ½Zi� for operands Z represented
in BCD or ODDS.

This binary encoding simplifies the hardware implemen-
tation of decimal arithmetic units, since we can make use of
state-of-the-art binary logic and binary arithmetic techni-
ques to implement digit operations. In particular, the ODDS
representation presents interesting properties (redundancy
and binary encoding of its digit set) for a fast and efficient
implementation of multioperand addition. Moreover, con-
versions from BCD to the ODDS representation are straight-
forward, since the digit set of BCD is a subset of the ODDS
representation.

In our work we use a SD radix-10 recoding of the BCD
multiplier [30], which requires to compute a set of decimal
multiples (f�5X; . . . ; 0X; . . . ; 5Xg) of the BCD multiplicand.
The main issue is to perform the �3 multiple without long
carry-propagation.

For input digits of the multiplicand in conventional BCD
(i.e., in the range [0, 9], e ¼ 0, r ¼ 0), the multiplication by 3
leads to a maximum decimal carry to the next position of 2
and to a maximum value of the interim digit (the result digit
before adding the carry from the lower position) of 9. There-
fore the resultant maximum digit (after adding the decimal
carry and the interim digit) is 11. Thus, the range of the dig-
its after the �3 multiplication is in the range [0, 11]. There-
fore the redundant BCD representations can host the
resultant digits with just one decimal carry propagation.

An important issue for this representation is the ten’s
complement operation. Since after the recoding of the
multiplier digits, negative multiplication digits may result,
it is necessary to negate (ten’s complement) the multipli-
cand to obtain the negative partial products. This opera-
tion is usually done by computing the nine’s complement
of the multiplicand and adding a one in the proper place
on the digit array.

The nine’s complement of a positive decimal operand is
given by

�10d þ
Xd�1

i¼0

ð9� ZiÞ � 10i: (3)

The implementation of ð9� ZiÞ leads to a complex imple-
mentation, since the Zi digits of the multiples generated
may take values higher than 9. A simple implementation is
obtained by observing that the excess-3 of the nine’s com-
plement of an operand is equal to the bit-complement of the
operand coded in excess-3.

In Table 1 we show how the nine’s complement can be
performed by simply inverting the bits of a digit Zi coded
in XS-3. At the decimal digit level, this is due to the fact that:

ð9� ZiÞ þ 3 ¼ 15� ðZi þ 3Þ (4)

for the ranges Zi 2 ½�3; 12� (½Zi� 2 ½0; 15�). Therefore to have
a simple negation for partial product generation we pro-
duce the decimal multiples in an excess-3 code. The nega-
tion is performed by simple bit inversion, that corresponds
to the excess-3 of the nine’s complement of the multiple.
Moreover, to simplify the implementation we combine the
multiple generation stage and the digit increment by 3
(to produce the excess-3) into a single module by using the
XS-3 code (more details in Section 4.1).

In summary, the main reasons for using the redundant
XS-3 code are: (1) to avoid long carry-propagations in the
generation of decimal positive multiplicand multiples, (2)
to obtain the negative multiples from the corresponding
positive ones easily, (3) simple conversion of the partial
products generated in XS-3 to the ODDS representation
for efficient partial product reduction (more details in
Section 4.3).

3 HIGH-LEVEL ARCHITECTURE

The high-level block diagram of the proposed parallel archi-
tecture for d� d-digit BCD decimal integer and fixed-point
multiplication is shown in Fig. 1. This architecture accepts
conventional (non-redundant) BCD inputs X, Y , generates
redundant BCD partial products PP , and computes the
BCD product P ¼ X � Y . It consists of the following three
stages1: (1) parallel generation of partial products coded in
XS-3, including generation of multiplicand multiples and
recoding of the multiplier operand, (2) recoding of partial
products from XS-3 to the ODDS representation and subse-
quent reduction, and (3) final conversion to a non-redun-
dant 2d-digit BCD product.

TABLE 1
Nine’s Complement for the XS-3 Representation

1. Each stage is explained in detail in the next sections, stage 1 in
Section 4, stage 2 in Section 5, and stage 3 in Section 6. In particular, we
provide implementations suited for the IEEE 754-2008 decimal arithme-
tic formats [15], that is, for d ¼ 16 (Decimal64) and d ¼ 34 digits (Deci-
mal128) in Sections 5.1 and 5.2, respectively.
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Stage 1) Decimal partial product generation. A SD radix-10
recoding of the BCD multiplier has been used. This recod-
ing produces a reduced number of partial products that
leads to a significant reduction in the overall multiplier
area [29]. Therefore, the recoding of the d-digit multiplier
Y into SD radix-10 digits Ybd�1; . . . ; Yb0, produces d partial
products PP ½d� 1�; . . . ; PP ½0�, one per digit; note that
each Ybk recoded digit is represented in a 6–bit hot-one
code to be used as control input of the multiplexers for
selecting the proper multiplicand multiple, f�5X; . . . ;
�1X; 0X; 1X; . . . ; 5Xg. An additional partial product
PP ½d� is produced by the most significant multiplier digit
after the recoding, so that the total number of partial
products generated is dþ 1.

In contrast to our previous SD radix-10 implementations
[29], [30], 3X is obtained in a reduced constant time delay
(�3 XOR-gate delays) by using the XS-3 representation.
Moreover, a negative multiple is generated from the corre-
spondent positive one by a bitwise XOR operation.
Consequently, the latency is reduced and the hardware
implementation is simplified. The scheme proposed in [14]
also produces 3X in constant time but using redundant
signed-digit BCD arithmetic.

Stage 2) Decimal partial product reduction. In this stage, the
array of dþ 1 ODDS partial products are reduced to two
2d-digit words (A, B). Our proposal relies on a binary carry-
save adder tree to perform carry-free additions of the deci-
mal partial products. The array of dþ 1 ODDS partial prod-
ucts can be viewed as adjacent digit columns of height
h � dþ 1. Since ODDS digits are encoded in binary, the
rules for binary arithmetic apply within the digit bounds,
and only carries generated between radix-10 digits (4-bit
columns) contribute to the decimal correction of the binary
sum. That is, if a carry out is produced as a result of a 4-bit
(modulo 16) binary addition, the binary sum must be

incremented by 6 at the appropriate position to obtain the
correct decimal sum (modulo 10 addition).

Two previous designs [12], [18] implement tree struc-
tures for the addition of ODDS operands. In the nonspecula-
tive BCD adder [18], a combinational logic block is used to
determine the sum correction after all the operands have
been added in a binary CSA tree, with the maximum num-
ber of inputs limited to 19 BCD operands.2 By contrast, in
our method the sum correction is evaluated concurrently
with the binary carry-save additions using columns of
binary counters. Basically we count the number of carries
per decimal column and then a multiplication by 6 is per-
formed (a correction by 6 for each carry-out from each col-
umn). The result is added as a correction term to the output
of the binary carry-save reduction tree. This improves sig-
nificantly the latency of the partial product reduction tree.
Moreover, the proposed architecture accepts an arbitrary
number of ODDS or BCD operand inputs. Some of PPR tree
structures presented in [12] (the area-improved PPR tree)
also exploit a similar idea, but rely on a custom designed
ODDS adder to perform some of the stage reductions. Our
proposal aims to provide an optimal reuse of any binary
CSA tree for multioperand decimal addition, as it was done
in [31] for the 4221 and 5211 decimal codings.

Stage 3) Conversion to (non-redundant) BCD. We consider
the use of a BCD carry-propagate adder [29] to perform
the final conversion to a non-redundant BCD product
P ¼ Aþ B. The proposed architecture is a 2d-digit hybrid
parallel prefix/carry-select adder, the BCD Quaternary
Tree adder (see Section 6). The sum of input digits Ai, Bi

at each position i has to be in the range ½0; 18� so that at
most one decimal carry is propagated to the next position
iþ 1 [22]. Furthermore, to generate the correct decimal
carry, the BCD addition algorithm implemented requires
Ai þBi to be obtained in excess-6. Several choices are
possible. We opt for representing operand A in BCD
excess-6 (Ai 2 ½0; 9�, ½Ai� ¼ Ai þ e, e ¼ 6), and B coded in
BCD (Bi 2 ½0; 9�, e ¼ 0).

4 DECIMAL PARTIAL PRODUCT GENERATION

The partial product generation stage comprises the recoding
of the multiplier to a SD radix-10 representation, the calcula-
tion of the multiplicand multiples in XS-3 code and the gen-
eration of the ODDS partial products.

The SD radix-10 encoding produces d SD radix-10 digits
Ybk 2 ½�5; 5�, with k ¼ 0; . . . ; d� 1, Yd�1 being the most sig-
nificant digit (MSD) of the multiplier [29]. Each digit Ybk is
represented with a 5-bit hot-one code (Y 1k; Y 2k; Y 3k; zY 4k;
Y 5k) to select the appropriate multiple f1X; . . . ; 5Xg with a
5:1 mux and a sign bit Ysk that controls the negation of the
selected multiple.

The negative multiples are obtained by ten’s comple-
menting the positive ones. This is equivalent to taking the
nine’s complement of the positive multiple and then add-
ing 1. As we have shown in Section 2, the nine’s comple-
ment can be obtained simply by bit inversion. This needs

Fig. 1. Combinational SD radix-10 architecture.

2. Providing support for 20 or more input BCD operands would
require a significant modification of the original nonspeculative addi-
tion algorithm.
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the positive multiplicand multiples to be coded in XS-3,
with digits in ½�3; 12�.

The d least significant partial products PP ½d� 1�; . . . ;
PP ½0� are generated from digits Ybk by using a set of 5:1
muxes, as shown in Fig. 2. The xor gates at the output of the
mux invert the multiplicand multiple, to obtain its 9’s com-
plement, if the SD radix-10 digit is negative (Ysk ¼ 1).

On the other hand, if the signals (Y 1k; Y 2k; Y 3k; Y 4k; Y 5k)
are all zero then PP ½k� ¼ 0, but it has to be coded in XS-3
(bit encoding 0011). Then, to set the two least significant bits
to 1, the input to the XOR gate is Ys�k ¼ Ysk _ Ybk iszero (_
denotes the boolean OR operator), where Ybk iszero equals
1 if all the signals (Y 1k; Y 2k; Y 3k; Y 4k; Y 5k) are zero.

In addition, the partial product signs are encoded into
their MSDs (see Section 4.2). The generation of the most sig-
nificant partial product PP ½d� is described in Section 4.4,
and only depends on Ysd�1, the sign of the most significant
SD radix-10 digit.

4.1 Generation of the Multiplicand Multiples

We denote by NX 2 f1X; 2X; 3X; 4X; 5Xg, the set of multi-
plicand multiples coded in the XS-3 representation, with
digits NXi 2 ½�3; 12�, being ½NXi� ¼ NXi þ 3 2 ½0; 15� the
corresponding value of the 4-bit binary encoding of NXi

given by Equation (2).
Fig. 3 shows the high-level block diagram of the multi-

ples generation with just one carry propagation. This is per-
formed in two steps:

1) digit recoding of the BCD multiplicand digits Xi

into a decimal carry 0 � Ti � Tmax and a digit �3 � Di �
12� Tmax, such as

Di þ 10� Ti ¼ ðN �XiÞ þ 3; (5)

being Tmax the maximum possible value for the decimal
carry.

2) The decimal carries transferred between adjacent dig-
its are assimilated obtaining the correct 4-bit representation
of XS-3 digitsNXi, that is

½NXi� ¼ Di þ Ti�1; ½NXi� 2 ½0; 15�ðNXi 2 ½�3; 12�Þ: (6)

The constraint for NXi still allows different implementa-
tions for NX. For a specific implementation, the mappings
for Ti and Di have to be selected. Table 2 shows the pre-
ferred digit recoding for the multiplesNX.

Then, by inverting the bits of the representation of NX,
operation defined at the ith digit by

NXi ¼ 15� ½NXi�;
we obtain NX. Replacing the relation between NXi and
½NXi� in the previous expression, it follows that

NXi ¼ 15� ðNXi þ 3Þ ¼ ð9�NXiÞ þ 3:

That is, NX is the 9’s complement of NX coded in XS-3,
with digitsNXi 2 ½�3; 12� and ½NXi� ¼ NXi þ 3 2 ½0; 15�.

4.2 Most-Significant Digit Encoding

The MSD of each PP ½k�, PPd½k�, is directly obtained in the
ODDS representation. Note that these digits store the carries
generated in the computation of the multiplicand multiples
and the sign bit of the partial product. For positive partial
products we have

PPd½k� ¼ Td�1 (7)

with Td�1 2 f0; 1; 2; 3; 4g (see Table 2). For negative partial
products, the ten’s complement operation leads to

PPd½k� ¼ �10þ ð9� Td�1Þ ¼ �1� Td�1 (8)

with Td�1 2 f0; 1; 2; 3; 4g. Therefore the two cases can be
expressed as

PPd½k� ¼ �Ysk þ ð�1ÞYskTd�1: (9)

Since we need to encode PPd½k� in the ODDS range ½0; 15�,
we add and subtract 8 in Eq. (9), resulting in

PPd½k� ¼ �8þ ½PPd½k��; (10)

with

½PPd½k�� ¼ 8� Ysk þ ð�1ÞYskTd�1:

Note that the term ½PPd½k�� is always positive. Specifically,
for positive partial products (Ysk ¼ 0), this term results in

Fig. 2. SD radix-10 generation of a partial product digit.

Fig. 3. Generation of a decimal multiplesNX.
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8þ Td�1 that is within the range [8], [12] (since 0 � Td�1 � 4).
For negative partial products (Ysk ¼ 1), this term results in
7� Td�1, that is within the range [3], [7]. All of the �8 terms
of the different partial products are grouped together in a
constant �8�Pd�1

k¼0 10
kþd that is added as a constant correc-

tion term to the results of the reduction array.
Therefore, the PPd½k�’s are encoded as ½PPd½k�� without

the �8 terms, which are added later (see Section 4.3), with
only positive values of the form

½PPd½k�� ¼ ð8þ Td�1Þ; if ðYsk ¼ 0Þ;
ð7� Td�1Þ; if ðYsk ¼ 1Þ;

�
(11)

resulting in ½PPd½k�� 2 ½3; 12�.
This encoding is implemented at bit level as an inver-

sion of the 3 LSB’s of Td�1 if Ysk ¼ 1 and the concatena-
tion of the MSB Ysk.

4.3 Correction Term

The resultant partial product sum has to be corrected off-
the-critical-path by adding a precomputed term, fcðdÞ,
which only depends on the format precision d. This term
has to gather: (a) the �8 constants that have not been
included in the MSD encoding and (b) a �3 constant for
every XS-3 partial product digit (introduced to simplify the
nine’s complement operation).

Actually, the addition of these �3 constants is equivalent
to convert the XS-3 digits of the partial products to the
ODDS representation. Note that the 4-bit encoding of a
XS-3 digit NXi (or 9�NXi) represents an ODDS digit
with value ½NXi� ¼ NXi þ 3 2 ½0; 15� (or ½9�NXi� ¼ 15�
½NXi� 2 ½0; 15�).

The pre-computed correction term is given by

fcðdÞ ¼ �8�
Xd�1

k¼0

10kþd � 3

�
Xd�1

i¼0

ðiþ 1Þ10i þ
Xd�2

i¼0

ðd� 1� iÞ10iþd

 !
:

(12)

Particularizing for d ¼ 16 and d ¼ 34 digit operands, the
following expressions for the correction term in 10’s com-
plement are obtained:

fcð16Þ ¼ �1032 þ 07407407407407417037037037037037

fcð34Þ ¼ �1068 þ 074074074074 	 	 	 07417037037037:
(13)

The correction term is allocated into the array of dþ 1 par-
tial products coded in ODDS (digits in ½0; 15�), as we show
in the next section.

4.4 Partial Product Array

As a conclusion of the considerations in the previous sec-
tions, Fig. 4 illustrates the shape of the partial product array,
particularizing for d ¼ 16. Note that the maximum digit col-
umn height is dþ 1.

In each column several components can be observed.
Digits labeled with O represent the redundant excess-3
BCD digits in the set ½0; 15�. Digits labeled with Sk represent
the MSD of each partial product, PPd½k� (see Section 4.2).
The 16 least significant digits of the correction term fcð16Þ
are placed at the least significant position of each row after
being added to Ysk, to complete the 10’s complement in case
of a negative partial product; thus Hk ¼ Ysk þ f0; 3; 7g (dig-
itwise addition, out of the critical path), so that Hk 2 ½0; 8�.
Note that the negative bit �1032 is canceled with the carry-
out of the partial product sum in excess. The 16 leading dig-
its of the correction term, ½fcð16Þ�d, are added to the most
significant partial product PP ½d�. Thus, in parallel with the
evaluation of the multiplicand multiples we compute
XF ¼ X þ ½fcð16Þ�d in the ODDS representation (note that
this computation does not involve a carry propagation and
it is out of the critical path). Digits labeled as F in Fig. 4, rep-
resent the most-significant partial product, PP ½d�, where
PP ½d� ¼ XF if Ysd�1 ¼ 1 and PP ½d� ¼ ½fcð16Þ�d if Ysd�1 ¼ 0.

5 DECIMAL PARTIAL PRODUCT REDUCTION

The PPR tree consists of three parts: (1) a regular binary
CSA tree to compute an estimation of the decimal partial
product sum in a binary carry-save form (S, C), (2) a sum
correction block to count the carries generated between the
digit columns, and (3) a decimal digit 3:2 compressor which
increments the carry-save sum according to the carries
count to obtain the final double-word product (A;B), A
being represented with excess-6 BCD digits and B being
represented with BCD digits. The PPR tree can be viewed as
adjacent columns of hODDS digits each, h being the column
height (see Fig. 4), and h � dþ 1.

Fig. 5 shows the high-level architecture of a column of
the PPR tree (the ith column) with h ODDS digits in [0, 15]
(4 bits per digit). Each digit column of the binary CSA tree
(the gray colored box in Fig. 5) reduces the h input digits
and ncin input carry bits, transferred from the previous

TABLE 2
Preferred Digit Recoding Mappings for NX Multiples
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column of the binary CSA tree, to two digits, Si, Ci, with
weight 10i. Moreover, a group of ncout carry outputs are gen-
erated and transferred to the next digit column of the PPR
tree. Roughly, the number of carries to the next column is
ncout ¼ h� 2.

The digit columns of the binary CSA tree are imple-
mented efficiently using 4-bit 3:2, 4:2 and higher order com-
pressors made of full adders. These compressors take
advantage of the delay difference of the inputs and of the
sum and carry outputs of the full adders, allowing signifi-
cant delay reductions.

The weight of the carry-outs generated at the ith column,
ciþ1½0�; . . . ; ciþ1½ncout � 1�, is 16� 10i because the addition of
the 4-bit digits is modulo 16. These carries are transferred
to the ðiþ 1Þth column of the PPR tree, with weight
10iþ1 ¼ 10� 10i.

Thus, there is a difference between the value of the carry
outs generated at the i-column and the value of the carries
transferred to the (iþ 1)-column. This difference, T , is com-
puted in the sum correction block of every digit column and
added to the partial product sum (S, C) in the decimal CSA.

Defining

Wi ¼
Xncout�1

k¼0

ciþ1½k�; (14)

the contribution of the column i to the sum correction term
T is given by

Wi � 16�Wi � 10 ¼ Wi � 6: (15)

Therefore, the sum correction is given by

T ¼
X2d�1

i¼0

ðWi � 6� 10iÞ ¼ 6�
X2d�1

i¼0

Wi � 10i: (16)

Consequently, the sum correction block evaluates Wi�6.
This module is composed of a m-bit binary counter and a

�6 operator. A straightforward implementation would use
m ¼ ncout and a decomposition of the �6 operator into �5
and �1 (both without long carry propagations), and then a
four to two decimal reduction to add the correction to the
PPR tree result.

However, to balance paths and reduce the critical path
delay we considered some optimizations. Specifically, the
optimized implementation of this block heavily depends on
the precision of the decimal representation; therefore its
implementation is merely outlined here, without going into
details. A detailed description of the implementation of the
sum correction block is provided in Sections 5.1 and 5.2 for
the Decimal64 and Decimal128 formats, respectively.

To obtain Wi, the carries generated in the column are
split into two parts: the m-bit counter adds the m first car-
ries of the binary digit column and produces a binary sum
Wmi of blog2ðmþ 1Þc bits. The counter is implemented with
full adders. To reduce the delay, the different arrival times
of the carries have been taken into account.

Fig. 6a shows the dot-diagram representation of this
reduction for a digit column with h ¼ 17 (max. column
height for Decimal64).

On the other hand, the remaining ncout �m carries are
introduced directly into the �6 block. Note that a suitable
value for m minimizes the delay overhead due to the sum
correction and simplifies the logic of the �6 operation. The
best value form depends basically on h, the height of the cor-
responding digit column. It was first estimated using the
delay evaluationmodel described in Section 7.1 and then val-
idated by automated RTL synthesis of the VHDLmodel.

The low-level implementation details of the �6 module
depend on the number of carry-outs, ncout and on the size of
the counter, m, and are explained in Sections 5.1 and 5.2.
However, it can be advanced that the �6 operation gener-
ates at most two carry digits Wg½0�iþ1, Wg½1�iþ1 to the next
column. Moreover, to illustrate the stage, we show the

Fig. 5. High-level architecture of the proposed decimal PPR tree
(h inputs, 1-digit column).Fig. 4. Decimal partial product array generated for d ¼ 16 (16� 16-digit

multiplier).
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corresponding dot-diagram representation for h ¼ 17
(m ¼ 14) in Fig. 6b. An efficient implementation is obtained
by representing the digit of Wi � 6 with l ODDS digits,
Wti½0�; . . . ;Wti½l� 1�), being l ¼ 1 for Decimal64, and l ¼ 2
for Decimal128.

After that, the sum correction digits (Wti½0�; . . . ; Wti½l� 1�)
and the output digits of the binary CSA tree (Si, Ci) are

reduced to two ODDS digits Gi 2 ½0; 15�, and Zi 2 ½0; 15�,
using a 4-bit binary ðlþ 2Þ : 2 CSA. This CSA generates l
carry outs giþ1½0�; . . . ; giþ1½l� 1� with weight 16� 10i, which
are transferred to the next column, and introduced into the
�6 block to produce another ODDS digit,Wzi 2 ½0; 15�.

The last step is the addition of digits Gi; Zi;Wzi of the
column, Gi þ Zi þWzi 2 ½0; 45�. We have designed a deci-
mal 3:2 digit compressor that reduces digits Wzi, Gi and Zi

to two digits Ai, Bi. The dot-diagram of the decimal 3:2
digit compressor is shown in Fig. 6c. To obtain the final
BCD product by using a single BCD carry propagate addi-
tion, that is, P ¼ AþB, which is the last step in the multi-
plication (see Fig. 1 and Section 3), it is required that
Ai þBi 2 ½0; 18�. Moreover, to reduce the delay of the final
BCD carry-propagate adder (see Section 6) operand A is
obtained in excess-6, so that we compute ½Ai� ¼ Ai þ e in
excess e ¼ 6 as defined by Equation (2), being the output
digits sum ½Ai� þBi 2 ½6; 24�.

The evaluation is split in two parts:
Block A computes the sum of the two MSBS of the input

digits (the bits with weights 8 and 4), and a two-bit carry
input Whi 2 f0; 1; 2; 3g. This sum is in ½0; 39�. The outputs of
this block are a BCD digit Ai in excess-6 ½Ai� 2 ½6; 15� and a
two-bit decimal carry output Whiþ1 2 f0; 1; 2; 3g which
is transferred to the next column (the iþ 1th column). Note
that the LSB of the carry output Whiþ1 depends on the MSB
of the input carry Whi. However, there is no further carry
propagation since the LSB of Whiþ1 is just the LSB of ½Aiþ1�,
that is, ½Aiþ1;0�.

On the other hand, Block B implements the sum of the
two LSB bits of the input digits (the bits with weights 2 and
1). This sum is in ½0; 9�, so that Bi is evaluated as a regular
binary addition.

Fig. 6. Dot-diagrams for the proposed decimal PPR (h ¼ 17 inputs, 1-
digit column).

Fig. 7. Implementation of the PPR Tree Highest Column (h ¼ 17) for a
16� 16-digit multiplication.
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5.1 Decimal 64 Implementation

The partial product array generated in the proposed
16� 16-digit BCD multiplier is shown in Fig. 4. The maxi-
mum column height in the partial product array is
hmax ¼ dþ 1 ¼ 17. Therefore, a binary 17 : 2 CSA tree is
required in this case, while other columns need CSA trees
with a smaller number of inputs. Fig. 7 shows the imple-
mentation of the PPR tree for the maximum height columns.
As stated previously, the maximum number of carries trans-
ferred between adjacent columns of the binary 17 : 2 CSA
tree is 15. These carries are labeled ciþ1½0�; . . . ; ciþ1½14� (out-
put carries) and ci½0�; . . . ; ci½14� (input carries) in the figure.

The binary 17 : 2 CSA tree is built of a first level com-
posed of a 9 : 2 compressor and a 8 : 2 compressors, and a
second level composed of a 4 : 2 compressor. To balance
the delay of the 17 : 2 CSA tree and the bit counter, m ¼ 14
has been chosen.

The 14-bit counter produces the 4-bit digit Wmi. The
computation of Wmi � 6 deserves a more detailed
description. The 4-bit digit Wmi ¼ wmi;3; wmi;2; wmi;1;
wmi;0, with wmi;j being the bits of the digit, is conve-
niently represented as

Wmi ¼ Wg½0�iþ1 � 2þ wmi;0; (17)

with

Wg½0�iþ1 ¼
X3
j¼1

wmi;j � 2j�1: (18)

Note that Wmi has been split into two parts, the three most-
significant bits, Wg½0�iþ1 2 ½0; 7�, and the least-significant bit,
wmi;0. Then,Wi ¼ Wmi þ ciþ1½14� results in

Wi ¼ Wg½0�iþ1 � 2þ wmi;0 þ ciþ1½14�; (19)

and consequently,

Wi � 6 ¼ Wg½0�iþ1 � 12þ ðwmi;0 þ ciþ1½14�Þ � 6

¼ ðWg½0�iþ1 � 10þWg½0�iþ1 � 2Þ
þ ðwmi;0 þ ciþ1½14�Þ � 6: (20)

The first term in Equation (20) represents a digit transfer
to the next column. On the other hand, multiplication by
2 is implemented by shifting the binary representation of
Wg½0�iþ1 one bit to the left, so that Wg½0�iþ1 � 2 2 ½0; 14� and
its least-significant bit is 0.

Then, the sum correction term (sct) at the ith column, dis-
carding the digit ðWg½0�iþ1 � 10 transferred to the iþ 1th
column and taking into account the digit transferred from
the i� 1th column, is given by

sct ¼ Wg½0�iþ1 � 2þ ðwmi;0 þ ciþ1½14�Þ � 6þWg½0�i: (21)

This sum correction term has been encoded in two ODDS
digitsWti 2 ½0; 15� andWzi 2 ½0; 15� as follows

� Digit Wti is obtained by the concatenation of the
most-significant bit of Wg½0�iþ1 � 2 and Wg½0�i, the
digit transfer from the i� 1th column. Note that
Wg½0�i is represented with only three bits (Wg½0�i 2
½0; 7�) and the concatenation of the most-significant
digit of Wg½0�iþ1 � 2 results in a 4-bit digit Wti 2
½0; 15�.

Digit Wti is added to the binary CSA tree column
sum (Si; Ci) using a binary 4-bit 3 : 2 CSA, reducing
these three digits to a double digit (Gi, Zi). A carry
output giþ1 is transferred to the iþ 1th column.
Therefore, to obtain the sum correction term, the
carry gi transferred from i� 1th column has to be
considered.

� Digit Wzi is obtained by the addition of the two least
significant bits of Wg½0�iþ1 � 2, ðwmi;0 þ ciþ1½14�Þ � 6
(see Equation (21)) and the carry giþ1 � 6. Moreover,
this addition produces a carry out bit Wg½1�iþ1 and a
sum digit in ½0; 14�. A carry-in Wg½1�i is concatenated
to this sum digit to obtainWzi.

Finally, a row of decimal 3 : 2 digit compressors is used
to reduce the 3-operand partial product sum (G, Z, Wz) to
two BCD operands (A, B), with A represented in excess-6
(see Fig. 6c).

5.2 Decimal 128 Implementation

The maximum height of the partial product array by the
34� 34-digit BCD multiplier is h ¼ 35. The proposed imple-
mentation for the maximum height columns of the PPR tree
is shown in Fig. 8. The binary 35 : 2 CSA tree is built of a
first level of three 9 : 2 and one 8 : 2 compressors, and a sec-
ond level of one 8 : 2 compressor. The number of carries
transferred to the next column of the binary CSA tree is 33.

The optimal value for parameter m is m ¼ 31. Therefore,
the addition of these carries has been split into two parts.
First, a 31-bit counter evaluates Wmi, the 5-bit sum of the 31
fastest carries. Then, the two slowest carries, ciþ1½31� and
ciþ1½32�, are added toWmi into a second 5-bit counter.

Fig. 8. Implementation of the PPR Tree Highest Column (h ¼ 35) for a
34� 34-digit multiplication.
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OperationWmi � 6 is decomposed as follows:

Wmi � 6 ¼ Wg½0�iþ1 � 10þWg½0�iþ1 � 2þ wmi;0 � 6 (22)

with

Wg½0�iþ1 ¼
X4
j¼1

wmi;j � 2j�1 2 ½0; 15�:

As in the decimal 64 case, the first term is transferred to the
iþ 1th column and the multiplication by 2 is implemented
as a one-bit binary left shift. The concatenation of digit
Wg½0�i, transferred from column i� 1, produces two redun-
dant BCD digitsWt½0�i 2 ½0; 15� andWt½1�i 2 ½0; 15�.

The 5-bit counter adds the remaining terms in Equa-
tion (22) with carries ciþ1½31� and ciþ1½32� and the multiplica-
tion �6 produces a 4-bit digit Wzi and two carries to the
iþ 1th column,Wg½1�iþ1.

After that, digits Si, Ci, Wt½0�i, Wt½1�i, are reduced to two
digits Gi; Zi 2 ½0; 15� using a 4-bit binary 4 : 2 CSA. The two
carries generated in the 4-bit 4 : 2 CSA are transfered to the
next column iþ 1 and introduced into the 5-bit counter.

Finally, the three digits Gi, Zi, Wzi are reduced to two
excess-6 BCD digits Ai and Bi by using the decimal digit
3 : 2 compressor.

6 FINAL CONVERSION TO BCD

The selected architecture is a 2d-digit hybrid parallel prefix/
carry-select adder, the BCD Quaternary Tree adder [29]. The
delay of this adder is slightly higher to the delay of a binary
adder of 8d bits with a similar topology.

The decimal carries are computed using a carry prefix
tree, while two conditional BCD digit sums are computed
out of the critical path using 4-bit digit adders which imple-
ments ½Ai� þBi þ 0 and ½Ai� þBi þ 1. These conditional
sums correspond to each one of the carry input values. If
the conditional carry out from a digit is one, the digit adder
performs a �6 subtraction. The selection of the appropriate
conditional BCD digit sums is implemented with a final
level of 2 : 1multiplexers.

To design the carry prefix tree we analyzed the signal
arrival profile from the PPRT tree, and considered the use
of different prefix tree topologies to optimize the area for
the minimum delay adder.

7 EVALUATION AND COMPARISON

The proposed combinational architectures for BCD 16�
16-digit and 34� 34-digit multipliers are evaluated and
compared with other representative BCD multipliers. The
area and delay figures of our architectures were obtained
from an area-delay evaluation model for static CMOS gates,
and validated with the synthesis of verified RTL models
coded in VHDL. This evaluation is detailed in Section 7.1.

Finally, the most representative sequential and parallel
decimal multipliers have been compared with our archi-
tecture. The results of the comparison are summarized in
Section 7.2.

7.1 Evaluation

As stated above, the evaluation has been performed in two
steps. First, a technological independent evaluation using a
model for static CMOS circuits based on Logical Effort (LE)
[32] has been carried out, and then the results obtained with
this model have been validated with the synthesis and func-
tional verification of the RTL model.

7.1.1 Technological Independent Evaluation

Our technological independent evaluation model [32] allows
us to obtain a rough estimation of the area and delay figures
for the architecture being evaluated. It takes into account the
different input and output gate loads, but neither intercon-
nections nor gate sizing optimizations are modeled. The
delay is given in FO4 units, that is, the delay of an 1� inverter
with a fanout of four inverters. The hardware complexity is
given as the number of equivalent minimum size NAND2
gates. We do not expect this rough model to give absolute
area-delay figures, due to the high wiring complexity of par-
allel multipliers. However, based on our experience this
model is good enough for making design decisions at gate
level and it provides reasonable accuracy of area and delay
ratios to compare different designs.

Table 3 shows the delay, input capacitance (Lin) and area
of the main building blocks used in the BCD multipliers.
The input capacitance is normalized to the input capaci-
tance of the 1� inverter. The Lout parameter represents the
normalized output load connected to the gate. The XOR2
gate is implemented with CMOS transmission gates.

To evaluate our architectures, gates with the drive
strength of the minimum sized (1�) inverter have been
assumed, and buffers have been inserted to deal with high
loads. The critical path delay in every stage of the multiplier
has been estimated as the sum of the delays of the gates on
this critical path. The area and delay figures obtained for the
16� 16-digit and 34� 34-digit architectures are shown in
Table 4.

7.1.2 Synthesis Results

The designs have been synthesized using Synopsys Design
Compiler B-2012.09-SP3 and a 90 nm CMOS standard cell
library [11]. The FO4 delay for this library is 49 ps under

TABLE 3
Area and Delay Eqs. in the LE-Based Model [32]

TABLE 4
Area and Delay (LE-Based Model) for the Proposed Mults
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typical conditions (1 V, 25
 C). The area-delay curves of
Fig. 9 have been obtained with the constraint Cout ¼ Cin ¼
4Cinv, where Cinv is the input capacitance of an 1� inverter
of the library.

We also include in Fig. 9 the area-delay points estimated
from the LE-based model evaluation. We have kept the hier-
archy of the design in the synthesis process as described in
Sections 3 to 6 (no top level architecture optimization
options). Nevertheless, some specific structures have been
optimized internally to reduce the overall delay.

To ensure the correctness of the designs we have simu-
lated the RTL models of the 16� 16-digit and 34� 34-digit
multipliers using the Synopsys VCS-MX tool and a com-
prehensive set of random test vectors.

7.2 Comparison

Table 5 shows the area and delay estimations obtained from
synthesis for some representative BCD sequential and com-
binational multipliers. As far as we know, themost represen-
tative high-performance BCD multipliers are 16� 16-digit
combinational [12], [14], [16], [19], [30] and sequential [9],
[10], [17] implementations. The area and delay figures shown

in Table 5 correspond to the minimum delay point of each
implementation, and were obtained from the synthesis
results provided in the respective reference, except for the
two multipliers of reference [12], which correspond to an
estimation obtained by their authors using a LE-based
model. The comparison ratios are given with respect to the
area and delay figures of a 53-bit binary Booth radix-4 multi-
plier extracted from [19].

The PPG of multipliers [7], [19] is based on a SD
radix-5 scheme, that generates 32 BCD partial products
for a 16-digit multiplier. Though it only requires simple
constant time delay BCD multiplicand multiples, the 9’s
complement operation for obtaining the negative multi-
ples is more complex than a simple bit inversion. The
partial product reduction implemented in [19] is a BCD
carry-save adder tree build of BCD digit adders. On the
other hand, the BCD partial products are reduced in [7]
by using counters that compute the binary sum of each
column of digits sum, and subsequent binary to decimal
conversions [7].

The BCD multiplier [16] pre-computes all the positive
decimal multiplicand multiples f0X; . . . ; 9Xg. The delay of
PPG is reduced by representing the complex operands
(3X; 6X; 7X; 8X; 9X) as the sum of two simpler multiples.
The number of partial products generated is therefore
equivalent to that of the SD radix-5 scheme. The PPR tree is
implemented with BCD digit adders as in [19]. This has the
disadvantage of a large area compared to the other BCD
multipliers analyzed.

The two 16� 16-digit BCD multipliers of [12] implement
an easy-multiple PPG [9] (only precomputes f2X; 4X; 5Xg)
that produces 32 BCD partial products. The intermediate
decimal partial product sums are computed in overloaded
BCD to speed up the PPR evaluation. The delay-improved
design uses a tree structure built of five levels overloaded
BCD digit adders, while the area-improved design replaces
two levels of these custom designed adders by three levels
of 4 : 2 compressors and a binary counter. This reduces the
area consumption but at the cost of introducing a significant
latency penalty.

Fig. 9. Area-delay space obtained from synthesis.

TABLE 5
Synthesis Results for Fixed-Point Multipliers
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The BCD multipliers in [30] use either the SD radix-5
PPG scheme or a SD radix-10 PPG scheme. The last one
has the advantage that practically it halves the number
of partial products generated by the former (17 against
32 for 16� 16-digit multiplications). However, it has the
disadvantage of a significant latency overhead due to the
generation of the complex multiple 3X. The latency and
area of prior-art multipliers are improved by represent-
ing the partial products in (4221) or (5211) decimal
codes, which allow them to implement PPR using a very
regular and compact tree of 4-bit binary carry-save add-
ers (built of 3 : 2 or 4 : 2 compressors) and decimal digit
doublers.

The most recent implementation is presented in [14]. It
also uses a SD radix-10 PPG scheme to reduce the number
of partial products generated to 17, and subsequently, the
area of the PPR tree. To avoid the latency overhead of the
3� multiple generation, the partial products are coded in a
redundant SD representation.

Sequential 16� 16-digit (Decimal64) BCD multipliers are
about two times smaller than equivalent parallel implementa-
tions, but have higher latency and reduced throughput (one
mult issued every 17 cycles). For example, the proposed mul-
tiplier is about seven times faster than the best sequential
implementation proposed in [9], but requires 2.5 times more
area.

To compare the high hardware cost of a combinational
Decimal128 implementation, we also include in Table 5 the
area and delay figures obtained for our 34� 34-digit BCD
multiplier. Due to the tight area and power consumption
constraints of current DFUs [5], a sequential architecture
seems a more realistic solution than a fully pipelined imple-
mentation for a commercial Decimal128 multiplier.

Finally, we present a more detailed comparison of the
fastest BCD 16� 16-digit combinational multipliers (SD
Radix-5 and SD Radix-10 [12], [14], [30], and the proposed
one) in terms of latency and area. The corresponding area-
delay synthesis values are shown in Fig. 10.

We have directly introduced in the figure the area-delay
curves of referenced multipliers [30] and [14] as provided
by their authors, since all of them were synthesized using
90 nm CMOS standard cell libraries and similar conditions.
The area-delay points for the two multipliers of reference

[12] correspond to an estimation obtained by their authors
using a LE-based model.

From the area-delay space represented in Fig. 10, we
observe that our proposed decimal multiplier has an area
improvement roughly in the range 20-35 percent depending
on the target delay. On the other hand, for the minimum
delay point (44FO4), the proposed multiplier is still compet-
itive with the fastest design shown in [14].

More recently, the authors of reference [12] have pre-
sented in [13] a comparison study between their delay-
improved multiplier and the multiplier of reference [14]
based on synthesis results using a TSMC 130 nm standard
CMOS process under typical conditions (1.2 V, 25
 C). They
show that for the minimum delay point of each one of the
two area-delay curves obtained, the delay-improved multi-
plier [12] is 20 percent faster and has 10 percent less area
compared to the design of [14]. Therefore, according to [13]
the curve corresponding to the design presented in [14]
should be to the left of the area-delay points corresponding
to the delay-improved design presented in [12].

8 CONCLUSION

In this paper we have presented the algorithm and architec-
ture of a new BCD parallel multiplier. The improvements of
the proposed architecture rely on the use of certain redun-
dant BCD codes, the XS-3 and ODDS representations. Partial
products can be generated very fast in the XS-3 representa-
tion using the SD radix-10 PPG scheme: positive multipli-
cand multiples (0X, 1X, 2X, 3X, 4X, 5X) are precomputed in a
carry-free way, while negative multiples are obtained by bit
inversion of the positive ones. On the other hand, recoding
of XS-3 partial products to the ODDS representation is
straightforward. The ODDS representation uses the redun-
dant digit-set [0, 15] and a 4-bit binary encoding (BCD encod-
ing), which allows the use of a binary carry-save adder tree to
perform partial product reduction in a very efficient way.We
have presented architectures for IEEE-754 formats, Deci-
mal64 (16 precision digits) andDecimal128 (34 precision dig-
its). The area and delay figures estimated from both a
theoretical model and synthesis show that our BCD multi-
plier presents 20-35 percent less area than other designs for a
given target delay.
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