
362 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

Area-Delay-Power Efficient Fixed-Point LMS
Adaptive Filter With Low Adaptation-Delay

Pramod Kumar Meher, Senior Member, IEEE, and Sang Yoon Park, Member, IEEE

Abstract— In this paper, we present an efficient architec-
ture for the implementation of a delayed least mean square
adaptive filter. For achieving lower adaptation-delay and
area-delay-power efficient implementation, we use a novel partial
product generator and propose a strategy for optimized balanced
pipelining across the time-consuming combinational blocks of
the structure. From synthesis results, we find that the proposed
design offers nearly 17% less area-delay product (ADP) and
nearly 14% less energy-delay product (EDP) than the best of the
existing systolic structures, on average, for filter lengths N = 8,
16, and 32. We propose an efficient fixed-point implementation
scheme of the proposed architecture, and derive the expression
for steady-state error. We show that the steady-state mean
squared error obtained from the analytical result matches with
the simulation result. Moreover, we have proposed a bit-level
pruning of the proposed architecture, which provides nearly
20% saving in ADP and 9% saving in EDP over the pro-
posed structure before pruning without noticeable degradation of
steady-state-error performance.

Index Terms— Adaptive filters, circuit optimization, fixed-point
arithmetic, least mean square (LMS) algorithms.

I. INTRODUCTION

THE LEAST MEAN SQUARE (LMS) adaptive filter is
the most popular and most widely used adaptive filter,

not only because of its simplicity but also because of its
satisfactory convergence performance [1], [2]. The direct-form
LMS adaptive filter involves a long critical path due to an
inner-product computation to obtain the filter output. The
critical path is required to be reduced by pipelined imple-
mentation when it exceeds the desired sample period. Since
the conventional LMS algorithm does not support pipelined
implementation because of its recursive behavior, it is modified
to a form called the delayed LMS (DLMS) algorithm [3]–[5],
which allows pipelined implementation of the filter.

A lot of work has been done to implement the DLMS algo-
rithm in systolic architectures to increase the maximum usable
frequency [3], [6], [7] but, they involve an adaptation delay of
∼ N cycles for filter length N , which is quite high for large-
order filters. Since the convergence performance degrades
considerably for a large adaptation delay, Visvanathan et al. [8]
have proposed a modified systolic architecture to reduce the
adaptation delay. A transpose-form LMS adaptive filter is
suggested in [9], where the filter output at any instant depends

Manuscript received September 9, 2012; revised December 5, 2012;
accepted January 8, 2013. Date of publication February 4, 2013; date of
current version January 17, 2014. (Corresponding author: S. Y. Park.)

The authors are with the Institute for Infocomm Research, 138632
Singapore (e-mail: pkmeher@i2r.a-star.edu.sg; sypark@i2r.a-star.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2239321

on the delayed versions of weights and the number of delays
in weights varies from 1 to N . Van and Feng [10] have
proposed a systolic architecture, where they have used rel-
atively large processing elements (PEs) for achieving a lower
adaptation delay with the critical path of one MAC operation.
Ting et al. [11] have proposed a fine-grained pipelined design
to limit the critical path to the maximum of one addition time,
which supports high sampling frequency, but involves a lot of
area overhead for pipelining and higher power consumption
than in [10], due to its large number of pipeline latches.
Further effort has been made by Meher and Maheshwari [12]
to reduce the number of adaptation delays. Meher and Park
have proposed a 2-bit multiplication cell, and used that with an
efficient adder tree for pipelined inner-product computation to
minimize the critical path and silicon area without increasing
the number of adaptation delays [13], [14].

The existing work on the DLMS adaptive filter does not
discuss the fixed-point implementation issues, e.g., location of
radix point, choice of word length, and quantization at various
stages of computation, although they directly affect the conver-
gence performance, particularly due to the recursive behavior
of the LMS algorithm. Therefore, fixed-point implementation
issues are given adequate emphasis in this paper. Besides,
we present here the optimization of our previously reported
design [13], [14] to reduce the number of pipeline delays along
with the area, sampling period, and energy consumption. The
proposed design is found to be more efficient in terms of the
power-delay product (PDP) and energy-delay product (EDP)
compared to the existing structures.

In the next section, we review the DLMS algorithm, and in
Section III, we describe the proposed optimized architecture
for its implementation. Section IV deals with fixed-point
implementation considerations and simulation studies of the
convergence of the algorithm. In Section V, we discuss the
synthesis of the proposed architecture and comparison with the
existing architectures. Conclusions are given in Section VI.

II. REVIEW OF DELAYED LMS ALGORITHM

The weights of LMS adaptive filter during the nth iteration
are updated according to the following equations [2]:

wn+1 = wn + μ · en · xn (1a)
where

en = dn − yn yn = wT
n · xn (1b)

where the input vector xn , and the weight vector wn at the nth
iteration are, respectively, given by

xn = [xn, xn−1, . . . , xn−N+1]T

wn = [wn(0),wn(1), . . . , wn(N − 1)]T ,

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MEHER AND PARK: AREA-DELAY-POWER EFFICIENT FIXED-POINT LMS ADAPTIVE FILTER WITH LOW ADAPTATION-DELAY 363

error,

xninput sample, ynfilter output,

desired

dnnew weights +
_

FIR FILTER
BLOCK

WEIGHT-
UPDATE BLOCK

mD

mD

en

signal

Fig. 1. Structure of the conventional delayed LMS adaptive filter.

desired signal,dn
input sample, xn

ERROR-COMPUTATION BLOCK

n1D

WEIGHT-UPDATE BLOCK

n2D

new weights

n1D

error en

Fig. 2. Structure of the modified delayed LMS adaptive filter.

dn is the desired response, yn is the filter output, and en

denotes the error computed during the nth iteration. μ is the
step-size, and N is the number of weights used in the LMS
adaptive filter.

In the case of pipelined designs with m pipeline stages,
the error en becomes available after m cycles, where m is
called the “adaptation delay.” The DLMS algorithm therefore
uses the delayed error en−m , i.e., the error corresponding to
(n − m)th iteration for updating the current weight instead of
the recent-most error. The weight-update equation of DLMS
adaptive filter is given by

wn+1 = wn + μ · en−m · xn−m . (2)

The block diagram of the DLMS adaptive filter is shown in
Fig. 1, where the adaptation delay of m cycles amounts to
the delay introduced by the whole of adaptive filter structure
consisting of finite impulse response (FIR) filtering and the
weight-update process.

It is shown in [12] that the adaptation delay of conventional
LMS can be decomposed into two parts: one part is the delay
introduced by the pipeline stages in FIR filtering, and the other
part is due to the delay involved in pipelining the weight-
update process. Based on such a decomposition of delay, the
DLMS adaptive filter can be implemented by a structure shown
in Fig. 2.

Assuming that the latency of computation of error is n1
cycles, the error computed by the structure at the nth cycle
is en−n1 , which is used with the input samples delayed by
n1 cycles to generate the weight-increment term. The weight-

0 100 200 300 400 500 600 700-80

-60

-40

-20

0

Iteration Number

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

dB
) LMS (n1=0, n2=0)

DLMS (n1=5, n2=1)
DLMS (n1=7, n2=2)

Fig. 3. Convergence performance of system identification with LMS and
modified DLMS adaptive filters.

update equation of the modified DLMS algorithm is given by

wn+1 = wn + μ · en−n1 · xn−n1 (3a)

where
en−n1 = dn−n1 − yn−n1 (3b)

and
yn = wT

n−n2
· xn. (3c)

We notice that, during the weight update, the error with n1
delays is used, while the filtering unit uses the weights delayed
by n2 cycles. The modified DLMS algorithm decouples com-
putations of the error-computation block and the weight-update
block and allows us to perform optimal pipelining by feed-
forward cut-set retiming of both these sections separately to
minimize the number of pipeline stages and adaptation delay.

The adaptive filters with different n1 and n2 are simulated
for a system identification problem. The 10-tap band-pass filter
with impulse response

hn = sin(wH (n − 4.5))

π(n − 4.5)
− sin(wL(n − 4.5))

π(n − 4.5)
for n = 0, 1, 2, . . . , 9, otherwise hn = 0 (4)

is used as the unknown system as in [10]. wH and wL

represent the high and low cutoff frequencies of the passband,
and are set to wH = 0.7π and wL = 0.3π , respectively. The
step size μ is set to 0.4. A 16-tap adaptive filter identifies
the unknown system with Gaussian random input xn of zero
mean and unit variance. In all cases, outputs of known system
are of unity power, and contaminated with white Gaussian
noise of −70 dB strength. Fig. 3 shows the learning curve
of MSE of the error signal en by averaging 20 runs for the
conventional LMS adaptive filter (n1 = 0, n2 = 0) and DLMS
adaptive filters with (n1 = 5, n2 = 1) and (n1 = 7, n2 = 2).
It can be seen that, as the total number of delays increases,
the convergence is slowed down, while the steady-state MSE
remains almost the same in all cases. In this example, the
MSE difference between the cases (n1 = 5, n2 = 1) and
(n1 = 7, n2 = 2) after 2000 iterations is less than 1 dB,
on average.

III. PROPOSED ARCHITECTURE

As shown in Fig. 2, there are two main computing blocks
in the adaptive filter architecture: 1) the error-computation



364 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 4. Proposed structure of the error-computation block.

Fig. 5. Proposed structure of PPG. AOC stands for AND/OR cell.

block, and 2) weight-update block. In this Section, we discuss
the design strategy of the proposed structure to minimize the
adaptation delay in the error-computation block, followed by
the weight-update block.

A. Pipelined Structure of the Error-Computation Block

The proposed structure for error-computation unit of an
N-tap DLMS adaptive filter is shown in Fig. 4. It consists of N
number of 2-b partial product generators (PPG) corresponding
to N multipliers and a cluster of L/2 binary adder trees,
followed by a single shift–add tree. Each subblock is described
in detail.

1) Structure of PPG: The structure of each PPG
is shown in Fig. 5. It consists of L/2 number of
2-to-3 decoders and the same number of AND/OR cells

(AOC).1 Each of the 2-to-3 decoders takes a 2-b digit (u1u0)
as input and produces three outputs b0 = u0 · ū1, b1 = ū0 ·u1,
and b2 = u0 · u1, such that b0 = 1 for (u1u0) = 1, b1 = 1 for
(u1u0) = 2, and b2 = 1 for (u1u0) = 3. The decoder output
b0, b1 and b2 along with w, 2w, and 3w are fed to an AOC,
where w, 2w, and 3w are in 2’s complement representation
and sign-extended to have (W + 2) bits each. To take care
of the sign of the input samples while computing the partial
product corresponding to the most significant digit (MSD), i.e.,
(uL−1uL−2) of the input sample, the AOC (L/2 − 1) is fed
with w, −2w, and −w as input since (uL−1uL−2) can have
four possible values 0, 1, −2, and −1.

2) Structure of AOCs: The structure and function of an AOC
are depicted in Fig. 6. Each AOC consists of three AND cells
and two OR cells. The structure and function of AND cells and

1We have assumed the word length of the input L to be even, which is
valid in most practical cases.



MEHER AND PARK: AREA-DELAY-POWER EFFICIENT FIXED-POINT LMS ADAPTIVE FILTER WITH LOW ADAPTATION-DELAY 365

(a)

(b) (c)

Fig. 6. Structure and function of AND/OR cell. Binary operators · and + in
(b) and (c) are implemented using AND and OR gates, respectively.

OR cells are depicted by Fig. 6(b) and (c), respectively. Each
AND cell takes an n-bit input D and a single bit input b, and
consists of n AND gates. It distributes all the n bits of input
D to its n AND gates as one of the inputs. The other inputs
of all the n AND gates are fed with the single-bit input b. As
shown in Fig. 6(c), each OR cell similarly takes a pair of n-bit
input words and has n OR gates. A pair of bits in the same
bit position in B and D is fed to the same OR gate.

The output of an AOC is w, 2w, and 3w corresponding
to the decimal values 1, 2, and 3 of the 2-b input (u1u0),
respectively. The decoder along with the AOC performs a
multiplication of input operand w with a 2-b digit (u1u0), such
that the PPG of Fig. 5 performs L/2 parallel multiplications of
input word w with a 2-b digit to produce L/2 partial products
of the product word wu.

3) Structure of Adder Tree: Conventionally, we should have
performed the shift-add operation on the partial products of
each PPG separately to obtain the product value and then
added all the N product values to compute the desired inner
product. However, the shift-add operation to obtain the product
value increases the word length, and consequently increases
the adder size of N − 1 additions of the product values. To
avoid such increase in word size of the adders, we add all the
N partial products of the same place value from all the N
PPGs by one adder tree.

All the L/2 partial products generated by each of the N
PPGs are thus added by (L/2) binary adder trees. The outputs
of the L/2 adder trees are then added by a shift-add tree
according to their place values. Each of the binary adder trees
require log2 N stages of adders to add N partial product, and
the shift–add tree requires log2 L − 1 stages of adders to add
L/2 output of L/2 binary adder trees.2 The addition scheme
for the error-computation block for a four-tap filter and input
word size L = 8 is shown in Fig. 7. For N = 4 and L = 8, the
adder network requires four binary adder trees of two stages
each and a two-stage shift–add tree. In this figure, we have
shown all possible locations of pipeline latches by dashed

2When L is not a power of 2, log2 L should be replaced by �log2 L�.

TABLE I

LOCATION OF PIPELINE LATCHES FOR L = 8 AND N = 8, 16, AND 32

N
Error-Computation Block Weight-Update Block

Adder Tree Shift–add Tree Shift–add Tree

8 Stage-2 Stage-1 and 2 Stage-1
16 Stage-3 Stage-1 and 2 Stage-1
32 Stage-3 Stage-1 and 2 Stage-2

lines, to reduce the critical path to one addition time. If we
introduce pipeline latches after every addition, it would require
L(N − 1)/2 + L/2 − 1 latches in log2 N + log2 L − 1 stages,
which would lead to a high adaptation delay and introduce
a large overhead of area and power consumption for large
values of N and L. On the other hand, some of those pipeline
latches are redundant in the sense that they are not required to
maintain a critical path of one addition time. The final adder
in the shift–add tree contributes to the maximum delay to the
critical path. Based on that observation, we have identified
the pipeline latches that do not contribute significantly to the
critical path and could exclude those without any noticeable
increase of the critical path. The location of pipeline latches
for filter lengths N = 8, 16, and 32 and for input size L = 8
are shown in Table I. The pipelining is performed by a feed-
forward cut-set retiming of the error-computation block [15].

B. Pipelined Structure of the Weight-Update Block

The proposed structure for the weight-update block is shown
in Fig. 8. It performs N multiply-accumulate operations of the
form (μ × e) × xi + wi to update N filter weights. The step
size μ is taken as a negative power of 2 to realize the multipli-
cation with recently available error only by a shift operation.
Each of the MAC units therefore performs the multiplication

of the shifted value of error with the delayed input samples
xi followed by the additions with the corresponding old
weight values wi . All the N multiplications for the MAC
operations are performed by N PPGs, followed by N shift–
add trees. Each of the PPGs generates L/2 partial products
corresponding to the product of the recently shifted error
value μ × e with L/2, the number of 2-b digits of the input
word xi , where the subexpression 3μ × e is shared within the
multiplier. Since the scaled error (μ×e) is multiplied with all
the N delayed input values in the weight-update block, this
subexpression can be shared across all the multipliers as well.
This leads to substantial reduction of the adder complexity.
The final outputs of MAC units constitute the desired updated
weights to be used as inputs to the error-computation block as
well as the weight-update block for the next iteration.

C. Adaptation Delay

As shown in Fig. 2, the adaptation delay is decomposed into
n1 and n2. The error-computation block generates the delayed
error by n1 − 1 cycles as shown in Fig. 4, which is fed to the
weight-update block shown in Fig. 8 after scaling by μ; then
the input is delayed by 1 cycle before the PPG to make the
total delay introduced by FIR filtering be n1. In Fig. 8, the
weight-update block generates wn−1−n2, and the weights are



366 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 7. Adder-structure of the filtering unit for N = 4 and L = 8.

Fig. 8. Proposed structure of the weight-update block.

delayed by n2 +1 cycles. However, it should be noted that the
delay by 1 cycle is due to the latch before the PPG, which
is included in the delay of the error-computation block, i.e.,
n1. Therefore, the delay generated in the weight-update block
becomes n2. If the locations of pipeline latches are decided
as in Table I, n1 becomes 5, where three latches are in the
error-computation block, one latch is after the subtraction in
Fig. 4, and the other latch is before PPG in Fig. 8. Also, n2 is

set to 1 from a latch in the shift-add tree in the weight-update
block.

IV. FIXED-POINT IMPLEMENTATION, OPTIMIZATION,
SIMULATION, AND ANALYSIS

In this section, we discuss the fixed-point implementation
and optimization of the proposed DLMS adaptive filter. A bit-
level pruning of the adder tree is also proposed to reduce the



MEHER AND PARK: AREA-DELAY-POWER EFFICIENT FIXED-POINT LMS ADAPTIVE FILTER WITH LOW ADAPTATION-DELAY 367

Fig. 9. Fixed-point representation of a binary number (Xi : integer word-
length; X f : fractional word-length).

TABLE II

FIXED-POINT REPRESENTATION OF THE SIGNALS OF THE PROPOSED

DLMS ADAPTIVE FILTER (μ = 2−(Li +log2 N ))

Signal Name Fixed-Point Representation

x (L , Li )

w (W, Wi )

p (W + 2, Wi + 2)

q (W + 2 + log2 N, Wi + 2 + log2 N)

y, d, e (W, Wi + Li + log2 N)

μe (W, Wi )

r (W + 2, Wi + 2)

s (W, Wi )

x, w, p, q, y, d, and e can be found in the error-computation block of
Fig. 4. μe, r, and s are defined in the weight-update block in Fig. 8. It is
to be noted that all the subscripts and time indices of signals are omitted
for simplicity of notation.

hardware complexity without noticeable degradation of steady-
state MSE.

A. Fixed-Point Design Considerations

For fixed-point implementation, the choice of word lengths
and radix points for input samples, weights, and internal
signals need to be decided. Fig. 9 shows the fixed-point
representation of a binary number. Let (X, Xi ) be a fixed-point
representation of a binary number where X is the word length
and Xi is the integer length. The word length and location of
radix point of xn and wn in Fig. 4 need to be predetermined
by the hardware designer taking the design constraints,
such as desired accuracy and hardware complexity, into
consideration. Assuming (L, Li ) and (W, Wi ), respectively, as
the representations of input signals and filter weights, all other
signals in Figs. 4 and 8 can be decided as shown in Table II.
The signal pi j , which is the output of PPG block (shown in
Fig. 4), has at most three times the value of input coefficients.
Thus, we can add two more bits to the word length and to the
integer length of the coefficients to avoid overflow. The output
of each stage in the adder tree in Fig. 7 is one bit more than the
size of input signals, so that the fixed-point representation of
the output of the adder tree with log2 N stages becomes (W +
log2 N + 2, Wi + log2 N + 2). Accordingly, the output of the
shift–add tree would be of the form (W +L+log2 N, Wi +Li +
log2 N), assuming that no truncation of any least significant
bits (LSB) is performed in the adder tree or the shift–add tree.
However, the number of bits of the output of the shift–add tree
is designed to have W bits. The most significant W bits need
to be retained out of (W + L + log2 N) bits, which results in
the fixed-point representation (W, Wi + Li + log2 N) for y, as
shown in Table II. Let the representation of the desired signal
d be the same as y, even though its quantization is usually

given as the input. For this purpose, the specific scaling/sign
extension and truncation/zero padding are required.
Since the LMS algorithm performs learning so that y
has the same sign as d , the error signal e can also be set to
have the same representation as y without overflow after the
subtraction.

It is shown in [4] that the convergence of an N-tap DLMS
adaptive filter with n1 adaptation delay will be ensured if

0 < μ <
2

(σ 2
x (N − 2) + 2n1 − 2)σ 2

x
(5)

where σ 2
x is the average power of input samples. Furthermore,

if the value of μ is defined as (power of 2) 2−n , where n ≤
Wi +Li +log2 N , the multiplication with μ is equivalent to the
change of location of the radix point. Since the multiplication
with μ does not need any arithmetic operation, it does not
introduce any truncation error. If we need to use a smaller step
size, i.e., n > Wi + Li + log2 N , some of the LSBs of en need
to be truncated. If we assume that n = Li + log2 N , i.e., μ =
2−(Li+log2 N) , as in Table II, the representation of μen should
be (W, Wi ) without any truncation. The weight increment
term s (shown in Fig. 8), which is equivalent to μenxn , is
required to have fixed-point representation (W + L, Wi + Li ).
However, only Wi MSBs in the computation of the shift–add
tree of the weight-update circuit are to be retained, while the
rest of the more significant bits of MSBs need to be discarded.
This is in accordance with the assumptions that, as the weights
converge toward the optimal value, the weight increment terms
become smaller, and the MSB end of error term contains
more number of zeros. Also, in our design, L − Li LSBs
of weight increment terms are truncated so that the terms
have the same fixed-point representation as the weight values.
We also assume that no overflow occurs during the addition
for the weight update. Otherwise, the word length of the
weights should be increased at every iteration, which is not
desirable. The assumption is valid since the weight increment
terms are small when the weights are converged. Also when
overflow occurs during the training period, the weight updating
is not appropriate and will lead to additional iterations to
reach convergence. Accordingly, the updated weight can be
computed in truncated form (W, Wi ) and fed into the error-
computation block.

B. Computer Simulation of the Proposed DLMS Filter

The proposed fixed-point DLMS adaptive filter is used for
system identification used in Section II. μ is set to 0.5, 0.25,
and 0.125 for filter lengths 8, 16, and 32, respectively, such
that the multiplication with μ does not require any additional
circuits. For the fixed-point simulation, the word length and
radix point of the input and coefficient are set to L = 16,
Li = 2, W = 16, Wi = 0, and the Gaussian random input xn

of zero mean and unit variance is scaled down to fit in with the
representation of (16, 2). The fixed-point data type of all the
other signals are obtained from Table II. Each learning curve
is averaged over 50 runs to obtain a clean curve. The proposed
design was coded in C++ using SystemC fixed-point library for
different orders of the band-pass filter, that is, N = 8, N = 16,



368 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

0 200 400 600 800 1000-80

-60

-40

-20

0

Iteration Number

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

dB
) N=8

N=16
N=32

Fig. 10. Mean-squared-error of the fixed-point DLMS filter output for system
identification for N = 8, 16, and 32.

and N = 32. The corresponding convergence behaviors are
obtained, as shown in Fig. 10. It is found that, as the filter
order increases, not only the convergence becomes slower, but
the steady-state MSE also increases.

C. Steady-State Error Estimation

In this section, the MSE of output of the proposed DLMS
adaptive filter due to the fixed-point quantization is analyzed.
Based on the models introduced in [16] and [17], the MSE
of output in the steady state is derived in terms of parameters
listed in Table II. Let us denote the primed symbols as the
truncated quantities due to the fixed-point representation, so
that the input and the desired signals can be written as

x′
n = xn + αn (6)

d ′
n = dn + βn (7)

where αn and βn are input quantization noise vector and
quantization noise of desired signal, respectively. The weight
vector can be written as

w′
n = wn + ρn (8)

where ρn is the error vector of current weights due to the finite
precision. The output signal y ′

n and weight-update equation
can accordingly be modified, respectively, to the forms

y ′
n = w′T

n x′
n + ηn (9)

w′
n+1 = w′

n + μe′
nx′

n + γ n (10)

where ηn and γ n are the errors due to the truncation of output
from the shift–add tree in the error-computation block and
weight-update block, respectively. The steady-state MSE in
the fixed-point representation can be expressed as

E |dn − y ′
n|2 = E |en|2 + E |αT

n wn |2 + E |ηn|2 + E |ρT
n xn|2

(11)

where E | · | is the operator for mathematical expectation,
and the terms en , αT

n wn , ηn , and ρT
n xn are assumed to be

uncorrelated.
The first term E |en|2, where en = dn − yn , is the excess

MSE from infinite precision computation, whereas the other
three terms are due to finite-precision arithmetic.

TABLE III

ESTIMATED AND SIMULATED STEADY-STATE MSES OF THE FIXED-POINT

DLMS ADAPTIVE FILTER (L = W = 16)

Filter Length Step Size (μ) Simulation Analysis

N = 8 2−1 −71.01 dB −70.97 dB

N = 16 2−2 −64.84 dB −64.97 dB

N = 32 2−3 −58.72 dB −58.95 dB

The second term can be calculated as

E |αT
n wn |2 = |w∗

n |2(m2
αn

+ σ 2
αn

) (12)

where w∗
n is the optimal Wiener vector, and mαn and σ 2

αn
are

defined as the mean and variance of αn when xn is truncated
to the fixed-point type of (L, Li ), as listed in Table II. αn can
be modeled as a uniform distribution with following mean and
variance:

mαn = 2−(L−Li )/2 (13a)

σ 2
αn

= 2−2(L−Li )/12. (13b)

For the calculation of the third term E |ηn|2 in (11), we have
used the fact that the output from shift–add tree in the error-
computation block is of the type (W, Wi + Li + log2 N) after
the final truncation. Therefore

E |ηn|2 = m2
ηn

+ σ 2
ηn

. (14)

where

m2
ηn

= 2−(W−(Wi+Li+log2 N))/2 (15a)

σ 2
ηn

= 2−2(W−(Wi+Li+log2 N))/12. (15b)

The last term E |ρT
n xn|2 in (11) can be obtained by using

the derivation proposed in [17] as

E |ρT
n xn|2 = m2

γn

�i�k
(

R−1
ki

)

μ2 + N
(
σ 2

γn
− m2

γn

)

2μ
(16)

where Rki represents the (k, i)th entry of the matrix E(xnxT
n ).

For the weight update in (10), the first operation is to multiply
e′

n with μ, which is equivalent to moving only the location
of the radix point and, therefore, does not introduce any
truncation error. The truncation after multiplication of μe′

n
with xn is only required to be considered in order to evaluate
γn . Then, we have

m2
γn

= 2−(W−Wi )/2 (17a)

σ 2
γn

= 2−2(W−Wi )/12. (17b)

For a large μ, the truncation error ηn from the error-
computation block becomes the dominant error source, and
(11) can be approximated as E |ηn|2. The MSE values are
estimated from analytical expressions as well as from the
simulation results by averaging over 50 experiments. Table III
shows that the steady-state MSE computed from analytical
expression matches with that of simulation of the proposed
architecture for different values of N and μ.



MEHER AND PARK: AREA-DELAY-POWER EFFICIENT FIXED-POINT LMS ADAPTIVE FILTER WITH LOW ADAPTATION-DELAY 369

Fig. 11. Dot-diagram for optimization of the adder tree in the case of N = 4,
L = 8, and W = 8.

D. Adder-Tree Optimization

The adder tree and shift–add tree for the computation of
yn can be pruned for further optimization of area, delay, and
power complexity. To illustrate the proposed pruning optimiza-
tion of adder tree and shift–add tree for the computation of
filter output, we take a simple example of filter length N = 4,
considering the word lengths L and W to be 8. The dot
diagram of the adder tree is shown in Fig. 11. Each row of
the dot diagram contains 10 dots, which represent the partial
products generated by the PPG unit, for W = 8. We have four
sets of partial products corresponding to four partial products
of each multiplier, since L = 8. Each set of partial products of
the same weight values contains four terms, since N = 4. The
final sum without truncation should be 18 b. However, we use
only 8 b in the final sum, and the rest 10 b are finally discarded.
To reduce the computational complexity, some of the LSBs of
inputs of the adder tree can be truncated, while some guard
bits can be used to minimize the impact of truncation on the
error performance of the adaptive filter. In Fig. 11, four bits
are taken as the guard bits and the rest six LSBs are truncated.
To have more hardware saving, the bits to be truncated are not
generated by the PPGs, so the complexity of PPGs also gets
reduced.

ηn defined in (9) increases if we prune the adder tree, and
the worst case error is caused when all the truncated bits are 1.
For the calculation of the sum of truncated values in the worst
case, let us denote k1 as the bit location of MSB of truncated
bits and Nk2 as the number of rows that are affected by the
truncation. In the example of Fig. 11, k1 and k2 are set to
5 and 3, respectively, since the bit positions from 0 to 5 are
truncated and a total of 12 rows are affected by the truncation
for N = 4. Also, k2 can be derived using k1 as

k2 = �k1

2
	 + 1 for k1 <

W

2
, otherwise k2 = W

2
(18)

since the number of truncated bits is reduced by 2 for every
group of N rows as shown in Fig. 11. Using k1, k2, and N , the

4 6 8 10 12 14 16 18-80

-70

-60

-50

-40

-30

k1

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

dB
)

N=8
N=16
N=32

Fig. 12. MSE at the steady-state versus k1 for N = 8, 16, and 32 (L =
W = 16).

sum of truncated values for the worst case can be formulated as

bworst = N
k2−1∑

j=0

k1∑

i=2 j

2i = N

(
k22k1+1 − 1

3
(4k2 − 1)

)
. (19)

In the example of Fig. 11, bworst amounts to 684. Meanwhile,
the LSB weight of the output of adder tree after final truncation
is 210 in the example. Therefore, there might be one bit
difference in the output of adder tree due to pruning. The
truncation error from each row (total 12 rows from row p00
to row p32 in Fig. 11) has a uniform distribution, and if the
individual errors is assumed to be independent of each other,
the mean and variance of the total error introduced can be
calculated as the sum of means and variances of each random
variable. However, it is unlikely that outputs from the same
PPG are uncorrelated since it is generated from the same
input sample. It would not be straightforward to estimate the
distribution of error from the pruning. However, as the value
of bworst is closer to or larger than the LSB weight of the
output after final truncation, the pruning will affect the overall
error more. Fig. 12 illustrates the steady-state MSE in terms
of k1 for N = 8, 16, and 32 when L = W = 16 to show
how much the pruning affects the output MSE. When k1 is
less than 10 for N = 8, the MSE deterioration is less than 1
dB compared to the case when the pruning is not applied.

V. COMPLEXITY CONSIDERATIONS

The hardware and time complexities of proposed design,
those of the structure of [11] and the best of systolic structures
[10] are listed in Table IV. The original DLMS structure
proposed in [4] is also listed in this table. It is found that
the proposed design has a shorter critical path of one addition
time as that of [11], and lower adaptation delay than the others.
If we consider each multiplier to have (L − 1) adders, then
the existing designs involve 16N adders, while the proposed
one involves 10N + 2 adders for L = 8. Similarly, it involves
less number of delay registers compared with others.

We have coded the proposed designs in VHDL and synthe-
sized by the Synopsys Design Compiler using CMOS 65-nm
library for different filter orders. The word length of the input
samples and weights are chosen to be 8, i.e., L = W = 8.
The step size μ is chosen to be 1/2Li+log2 N to realize



370 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

TABLE IV

COMPARISON OF HARDWARE AND TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES FOR L = 8

Design Critical Path n1 n2
Hardware Elements

No. of Adders No. of Multipliers No. of Registers

Long et al [4] TM + TA log2 N + 1 0 2N 2N 3N + 2 log2 N + 1

Ting et al. [11] TA log2 N + 5 3 2N 2N 10N + 8

Van and Feng [10] TM + TA N/4 + 3 0 2N 2N 5N + 3

Proposed Design TA 5 1 10N + 2 0 2N + 14 + E†

† E = 24, 40 and 48 for N = 8, 16 and 32, respectively. Besides, proposed design needs additional 24N AND cells and 16N OR cells. The 2s complement
operator in Figs. 5 and 8 is counted as one adder, and it is assumed that the multiplication with the step size does not need the multiplier over all the
structures.

TABLE V

PERFORMANCE COMPARISON OF DLMS ADAPTIVE FILTER BASED ON SYNTHESIS RESULT USING CMOS 65-nm LIBRARY

Design
Filter DAT Latency Area Leakage EPS ADP EDP ADP EDP

Length, N (ns) (cycles) (sq.μm) Power (mW) (mW×ns) (sq. μm× ns) (mW×ns2) Reduction Reduction

Ting et al [11]

8 1.14 8 24204 0.13 18.49 26867 21.08 − −
16 1.19 9 48049 0.27 36.43 55737 43.35 − −
32 1.25 10 95693 0.54 72.37 116745 90.47 − −

Van and Feng [10]

8 1.35 5 13796 0.08 7.29 18349 9.84 − −
16 1.35 7 27739 0.16 14.29 36893 19.30 − −
32 1.35 11 55638 0.32 27.64 73998 37.31 − −

Proposed Design-I

8 1.14 5 14029 0.07 8.53 15572 9.72 15.13% 1.14%

16 1.19 5 26660 0.14 14.58 31192 17.34 15.45% 10.10%

32 1.25 5 48217 0.27 21.00 58824 26.25 20.50% 29.64%

Proposed Design-II

8 0.99 5 12765 0.06 8.42 12382 8.33 32.51% 15.22%

16 1.15 5 24360 0.13 14.75 27526 16.96 25.38% 12.07%

32 1.15 5 43233 0.24 21.23 48853 24.41 33.98% 34.55%

DAT: data-arrival time; ADP: area–delay product; EPS: energy per sample; EDP: energy–delay product. ADP and EDP reductions in last two columns are
improvements of proposed designs over [10] in percentage. Proposed Design-I: without optimization, Proposed Design-II: after optimization of adder tree
with k1 = 5.

its multiplication without any additional circuitry. The word
length of all the other signals are determined based on the
types listed in Table II. We have also coded structures proposed
in [10] and [11] using VHDL, and synthesized using the same
library and synthesis options in the Design Compiler for a
fair comparison. In Table V, we have shown the synthesis
results of the proposed designs and existing designs in terms
of data arrival time (DAT), area, energy per sample (EPS),
ADP, and EDP obtained for filter lengths N = 8, 16, and 32.
The proposed design-I before pruning of the adder tree has
the same DAT as the design in [11] since the critical paths
of both designs are same as TA as shown in Table IV, while
the design in [10] has a longer DAT which is equivalent to
TA + TM . However, the proposed design-II after the pruning
of the adder tree has a slightly smaller DAT than the existing
designs. Also, the proposed designs could reduce the area
by using a PPG based on common subexpression sharing,
compared to the existing designs. As shown in Table V, the
reduction in area is more significant in the case of N = 32
since more sharing can be obtained in the case of large order
filters. The proposed designs could achieve less area and more
power reduction compared with [11] by removing redundant
pipeline latches, which are not required to maintain a critical
path of one addition time. It is found that the proposed design-I

TABLE VI

FPGA IMPLEMENTATIONS OF PROPOSED DESIGNS FOR L = 8 AND

N = 8, 16, AND 32

Design
Proposed Design-I Proposed Design-II

NOS MUF NOS MUF

Xilinx Virtex-4 (XC4VSX35-10FF668)

N = 8 1024 148.7 931 151.6

N = 16 2036 121.2 1881 124.6

N = 32 4036 121.2 3673 124.6

Xilinx Spartan-3A DSP (XC3SD1800A-4FG676)

N = 8 1025 87.2 966 93.8

N = 16 2049 70.3 1915 74.8

N = 32 4060 70.3 3750 75.7

NOS stands for the number of slices. MUF stands for the maximum usable
frequency in [MHz].

involves ∼ 17% less ADP and ∼ 14% less EDP than the best
previous work of [10], on average, for filter lengths N = 8, 16,
and 32. The proposed design-II, similarly, achieves ∼ 31% less
ADP and nearly ∼ 21% less EDP than the structure of [10]
for the same filters. The optimization of the adder tree of the



MEHER AND PARK: AREA-DELAY-POWER EFFICIENT FIXED-POINT LMS ADAPTIVE FILTER WITH LOW ADAPTATION-DELAY 371

proposed structure with k1 = 5 offers ∼ 20% less ADP and
∼ 9% less EDP over the structure before optimization of the
adder tree.

The proposed designs were also implemented on the field-
programmable gate array (FPGA) platform of Xilinx devices.
The number of slices (NOS) and the maximum usable fre-
quency (MUF) using two different devices of Spartan-3A
(XC3SD1800A-4FG676) and Virtex-4 (XC4VSX35-10FF668)
are listed in Table VI. The proposed design-II, after the
pruning, offers nearly 11.86% less slice-delay product, which
is calculated as the average NOS/MUF, for N = 8, 16, 32,
and two devices.

VI. CONCLUSION

We proposed an area–delay-power efficient low adaptation-
delay architecture for fixed-point implementation of LMS
adaptive filter. We used a novel PPG for efficient implementa-
tion of general multiplications and inner-product computation
by common subexpression sharing. Besides, we have proposed
an efficient addition scheme for inner-product computation to
reduce the adaptation delay significantly in order to achieve
faster convergence performance and to reduce the critical
path to support high input-sampling rates. Aside from this,
we proposed a strategy for optimized balanced pipelining
across the time-consuming blocks of the structure to reduce
the adaptation delay and power consumption, as well. The
proposed structure involved significantly less adaptation delay
and provided significant saving of ADP and EDP compared to
the existing structures. We proposed a fixed-point implemen-
tation of the proposed architecture, and derived the expression
for steady-state error. We found that the steady-state MSE
obtained from the analytical result matched well with the
simulation result. We also discussed a pruning scheme that
provides nearly 20% saving in the ADP and 9% saving in
EDP over the proposed structure before pruning, without a
noticeable degradation of steady-state error performance. The
highest sampling rate that could be supported by the ASIC
implementation of the proposed design ranged from about 870
to 1010 MHz for filter orders 8 to 32. When the adaptive filter
is required to be operated at a lower sampling rate, one can use
the proposed design with a clock slower than the maximum
usable frequency and a lower operating voltage to reduce the
power consumption further.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1985.

[2] S. Haykin and B. Widrow, Least-Mean-Square Adaptive Filters. Hobo-
ken, NJ, USA: Wiley, 2003.

[3] M. D. Meyer and D. P. Agrawal, “A modular pipelined implementation
of a delayed LMS transversal adaptive filter,” in Proc. IEEE Int. Symp.
Circuits Syst., May 1990, pp. 1943–1946.

[4] G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with delayed
coefficient adaptation,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, no. 9, pp. 1397–1405, Sep. 1989.

[5] G. Long, F. Ling, and J. G. Proakis, “Corrections to ‘The LMS algorithm
with delayed coefficient adaptation’,” IEEE Trans. Signal Process.,
vol. 40, no. 1, pp. 230–232, Jan. 1992.

[6] H. Herzberg and R. Haimi-Cohen, “A systolic array realization of an
LMS adaptive filter and the effects of delayed adaptation,” IEEE Trans.
Signal Process., vol. 40, no. 11, pp. 2799–2803, Nov. 1992.

[7] M. D. Meyer and D. P. Agrawal, “A high sampling rate delayed LMS
filter architecture,” IEEE Trans. Circuits Syst. II, Analog Digital Signal
Process., vol. 40, no. 11, pp. 727–729, Nov. 1993.

[8] S. Ramanathan and V. Visvanathan, “A systolic architecture for
LMS adaptive filtering with minimal adaptation delay,” in Proc.
Int. Conf. Very Large Scale Integr. (VLSI) Design, Jan. 1996,
pp. 286–289.

[9] Y. Yi, R. Woods, L.-K. Ting, and C. F. N. Cowan, “High speed
FPGA-based implementations of delayed-LMS filters,” J. Very Large
Scale Integr. (VLSI) Signal Process., vol. 39, nos. 1–2, pp. 113–131,
Jan. 2005.

[10] L. D. Van and W. S. Feng, “An efficient systolic architecture for
the DLMS adaptive filter and its applications,” IEEE Trans. Circuits
Syst. II, Analog Digital Signal Process., vol. 48, no. 4, pp. 359–366,
Apr. 2001.

[11] L.-K. Ting, R. Woods, and C. F. N. Cowan, “Virtex FPGA imple-
mentation of a pipelined adaptive LMS predictor for electronic support
measures receivers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 13, no. 1, pp. 86–99, Jan. 2005.

[12] P. K. Meher and M. Maheshwari, “A high-speed FIR adap-
tive filter architecture using a modified delayed LMS algo-
rithm,” in Proc. IEEE Int. Symp. Circuits Syst., May 2011,
pp. 121–124.

[13] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive
filter part-I: Introducing a novel multiplication cell,” in Proc. IEEE Int.
Midwest Symp. Circuits Syst., Aug. 2011, pp. 1–4.

[14] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive filter
part-II: An optimized architecture,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst., Aug. 2011, pp. 1–4.

[15] K. K. Parhi, VLSI Digital Signal Procesing Systems: Design and
Implementation. New York, USA: Wiley, 1999.

[16] C. Caraiscos and B. Liu, “A roundoff error analysis of the LMS adaptive
algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 1,
pp. 34–41, Feb. 1984.

[17] R. Rocher, D. Menard, O. Sentieys, and P. Scalart, “Accuracy evaluation
of fixed-point LMS algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., May 2004, pp. 237–240.

Pramod Kumar Meher (SM’03) is currently a
Senior Scientist with the Institute for Infocomm
Research, Singapore. His research interests include
design of dedicated and reconfigurable architectures
for computation-intensive algorithms pertaining to
signal, image and video processing, communication,
bio-informatics and intelligent computing.

Dr. Meher is a Fellow of the Institution of Elec-
tronics and Telecommunication Engineers, India. He
has served as an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:

EXPRESS BRIEFS during 2008–2011 and as a speaker for the Distinguished
Lecturer Program (DLP) of IEEE Circuits Systems Society during 2011–2012.
He is continuing to serve as Associate Editor for the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, and Journal
of Circuits, Systems, and Signal Processing. He was a recipient of the
Samanta Chandrasekhar Award for excellence in research in engineering and
technology for the year 1999.

Sang Yoon Park (S’03–M’11) received the B.S.,
M.S., and Ph.D. degrees from the Department of
Electrical Engineering and Computer Science, Seoul
National University, Seoul, Korea, in 2000, 2002,
and 2006, respectively.

He joined the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore, as a Research Fellow in 2007.
Since 2008, he has been with the Institute for Info-
comm Research, Singapore, where he is currently
a Research Scientist. His research interests include

dedicated/reconfigurable architectures and algorithms for low-power/low-
area/high-performance digital signal processing and communication systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


